Rac Activation Assays

Rac Activation Assays
  • Safe non-radioactive assay format
  • Colored agarose beads allow visual check
  • Fast results: 1 hour plus electrophoresis/blotting time
  • Compatible with human, mouse, and rat samples (Rac2 assays with human and mouse only)

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Rac1 Activation Assay
Catalog Number
STA-401-1
Size
20 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$695.00
Rac2 Activation Assay
Catalog Number
STA-401-2
Size
20 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$695.00
RhoA/Rac1/Cdc42 Activation Assay Combo Kit
Catalog Number
STA-405
Size
3 x 10 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$995.00
Rac1/Cdc42 Activation Assay Combo Kit
Catalog Number
STA-404
Size
2 x 20 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$995.00
Product Details

Our Rac Activation Assays use visible agarose beads to selectively precipitate the active form of Rac1 or Rac2. The precipitated small GTPase is then detected by Western blot using a Rac1- or Rac2-specific antibody included in the kit.

If you are also studying Cdc42 or RhoA, you may consider one of our economical combination kits.

Small GTPase Activation Assay Principle

Immunoblotting with the Rac Activation Assay. Lane 1: GTPase Immunoblot Positive Control. Lane 2: 293 cell lysate loaded with GDP and incubated with PAK1 PBD Agarose beads. Lane 3: 293 cell lysate loaded with GTPγS and incubated with PAK1 PBD Agarose beads.

Recent Product Citations
  1. Yuan, H. et al. (2023). Hypoxia-induced TMTC3 expression in esophageal squamous cell carcinoma potentiates tumor angiogenesis through Rho GTPase/STAT3/VEGFA pathway. J Exp Clin Cancer Res. 42(1):249. doi: 10.1186/s13046-023-02821-y (#STA-405).
  2. Kim, K.B. et al. (2022). WNT5A-RHOA signaling is a driver of tumorigenesis and represents a therapeutically actionable vulnerability in small cell lung cancer. Cancer Res. doi: 10.1158/0008-5472.CAN-22-1170 (#STA-401-1).
  3. Hwang, S. et al. (2022). Exogenous 8-hydroxydeoxyguanosine attenuates doxorubicin-induced cardiotoxicity by decreasing pyroptosis in H9c2 cardiomyocytes. BMC Mol Cell Biol. 23(1):55. doi: 10.1186/s12860-022-00454-1 (#STA-401-1).
  4. Fu, Y. et al. (2022). CapG promoted nasopharyngeal carcinoma cell motility involving Rho motility pathway independent of ROCK. World J Surg Oncol. 20(1):347. doi: 10.1186/s12957-022-02808-7 (#STA-401-1).
  5. Yin, J. et al. (2022). Procyanidin B2 suppresses hyperglycemia‑induced renal mesangial cell dysfunction by modulating CAV‑1‑dependent signaling. Exp Ther Med. doi: 10.3892/etm.2022.11423 (#STA-401-1).
  6. Zhang, Y. et al. (2022). Suppression of RNA editing by miR-17 inhibits the stemness of melanoma stem cells. Mol Ther Nucleic Acids. doi: 10.1016/j.omtn.2021.12.021 (#STA-401-1).
  7. Zang, C.X. et al. (2021). HACE1 negatively regulates neuroinflammation through ubiquitylating and degrading Rac1 in Parkinson's disease models. Acta Pharmacol Sin. doi: 10.1038/s41401-021-00778-2 (#STA-401-1).
  8. Bianchi-Smiraglia, A. et al. (2021). Regulation of local GTP availability controls RAC1 activity and cell invasion. Nat Commun. 12(1):6091. doi: 10.1038/s41467-021-26324-6 (#STA-401-1).
  9. Jaafar, L. et al. (2021). StarD13 differentially regulates migration and invasion in prostate cancer cells. Hum Cell. doi: 10.1007/s13577-020-00479-8 (#STA-405).
  10. Wang, K. et al. (2021). Ginkgo biloba extract protects human neuroblastoma SH‑SY5Y cells against oxidative glutamate toxicity by activating redoxosome‑p66Shc. Exp Ther Med. doi: 10.3892/etm.2021.10383 (#STA-401-1).
  11. Fu, P. et al. (2021). NOX4 Mediates Pseudomonas aeruginosa-Induced Nuclear Reactive Oxygen Species Generation and Chromatin Remodeling in Lung Epithelium. Antioxidants (Basel). 10(3):477. doi: 10.3390/antiox10030477 (#STA-401-1).
  12. Yang, X. et al. (2021). LINC00665 promotes the progression of acute myeloid leukemia by regulating the miR-4458/DOCK1 pathway. Sci Rep. 11(1):5009. doi: 10.1038/s41598-021-82834-9 (#STA-401-1).
  13. Ghassibe-Sabbagh, M. et al. (2021). Altered regulation of cell migration in IRF6-mutated orofacial cleft patients-derived primary cells reveals a novel role of Rho GTPases in cleft/lip palate development. Cells Dev. doi: 10.1016/j.cdev.2021.203674 (#STA-405).
  14. Li, M.J. et al. (2021). Ezrin Promotes the Proliferation, Migration, and Invasion of Ovarian Cancer Cells. Biomed. Environ. Sci. 34(2):139-151. doi: 10.3967/bes2021.020 (#STA-405).
  15. Matarrese, P. et al. (2021). Physical Interaction between HPV16E7 and the Actin-Binding Protein Gelsolin Regulates Epithelial-Mesenchymal Transition via HIPPO-YAP Axis. Cancers (Basel). 13(2):353. doi: 10.3390/cancers13020353 (#STA-405).
  16. El-Mais, N. et al. (2020). Human recombinant arginase I [HuArgI (Co)-PEG5000]-induced arginine depletion inhibits ovarian cancer cell adhesion and migration through autophagy-mediated inhibition of RhoA. J Ovarian Res. 14(1):13. doi: 10.1186/s13048-021-00767-3 (#STA-405).
  17. El‑Chami, D. et al. (2021). Recombinant anthrax lethal toxin inhibits cell motility and invasion in breast cancer cells through the dysregulation of Rho GTPases. Oncol Lett. 21(2):1-7. doi:  10.3892/ol.2020.12424 (#STA-405).
  18. Al Haddad, M. et al. (2020). Differential regulation of rho GTPases during lung adenocarcinoma migration and invasion reveals a novel role of the tumor suppressor StarD13 in invadopodia regulation. Cell Commun Signal. 18(1):144. doi: 10.1186/s12964-020-00635-5 (#STA-405).
  19. Badaoui, M. et al. (2020). Vav3 Mediates Pseudomonas aeruginosa Adhesion to the Cystic Fibrosis Airway Epithelium. Cell Rep. 32(1):107842. doi: 10.1016/j.celrep.2020.107842 (#STA-405).
  20. Rajakylä, E.K. et al. (2020). Assembly of Peripheral Actomyosin Bundles in Epithelial Cells Is Dependent on the CaMKK2/AMPK Pathway. Cell Rep. 30(12):4266-4280.e4. doi: 10.1016/j.celrep.2020.02.096 (#STA-405).
  21. Farzaneh Behelgardi, M. et al. (2020). Targeting signaling pathways of VEGFR1 and VEGFR2 as a potential target in the treatment of breast cancer. Mol Biol Rep. doi: 10.1007/s11033-020-05306-9 (#STA-401-1).
  22. Zhao, K. et al. (2019). TesG is a type I secretion effector of Pseudomonas aeruginosa that suppresses the host immune response during chronic infection. Nat Microbiol. 4(3):459-469. doi: 10.1038/s41564-018-0322-4 (#STA-401-2).
  23. Shin, B. et al. (2019). Rac1 Inhibition Via Srgap2 Restrains Inflammatory Osteoclastogenesis and Limits the Clastokine, SLIT3. J Bone Miner Res. doi: 10.1002/jbmr.3945 (#STA-404).
  24. Mohapatra, P. et al. (2019). Combination therapy targeting the elevated interleukin-6 level reduces invasive migration of BRAF inhibitor-resistant melanoma cells. Mol Oncol. 13(2):480-494. doi: 10.1002/1878-0261.12433 (#STA-404).
  25. Stocker, T.J. et al. (2018). The Actin Regulator Coronin-1A Modulates Platelet Shape Change and Consolidates Arterial Thrombosis. Thromb Haemost. 118(12):2098-2111. doi: 10.1055/s-0038-1675604 (#STA-404).
  26. Khanna, P. et al. (2018). GRAMD1B regulates cell migration in breast cancer cells through JAK/STAT and Akt signaling. Sci Rep. 8(1):9511. doi: 10.1038/s41598-018-27864-6 (#STA-404).
  27. Baetta, R. et al. (2015). Atorvastatin reduces long pentraxin 3 expression in vascular cells by inhibiting protein geranylgeranylation. Vascul Pharmacol. doi: 10.1016/j.vph.2014.11.008 (#STA-401-2).
  28. Tanaka, U. et al. (2015). Sprouty2 inhibition promotes proliferation and migration of periodontal ligament cells. Oral Dis. doi: 10.1111/odi.12369 (#STA-404).
  29. Galic, M. et al. (2014). Dynamic Recruitment of the Curvature-Sensitive Protein ArhGAP44 to Nanoscale Membrane Deformations Limits Exploratory Filopodia Initiation in Neurons. Elife. doi: 10.7554/eLife.03116 (#STA-404).
  30. Holmes,K.M. et al.(2012).Insulin-Like Growth Factor-Binding Protein 2-Driven Glioma Progression is Prevented by Blocking a Clinically Significant Integrin, Integrin-Linked Kinase, and NF-B Network. Proc Natl Acad Sci . 109:2168-2173 (#STA-404).