Protein Carbonyl Immunoblot Kit

Protein Carbonyl Immunoblot Kit
  • DNPH derivatization after blotting allows direct comparison of oxidized and non-oxidized protein fingerprints
  • Suitable for plasma, serum, cell lysates or purified proteins

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Protein Carbonyl Immunoblot Kit
Catalog Number
STA-308
Size
10 blots
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$425.00
Product Details

The most common products of protein oxidation in biological samples are the carbonyl derivatives of proline, lysine, arginine and threonine residues. Such derivatives are chemically stable and serve as markers for oxidative stress in most types of reactive oxygen species.

Our OxiSelect™ Protein Carbonyl Immunoblot Kit provides a rapid, efficient method for the detection of protein carbonyl residues. The immunoblot format provides a convenient way to compare oxidized and non-oxidized protein fingerprints.

Assay Principle for the OxiSelect™ Protein Oxidation Immunoblot Kit.

Recent Product Citations
  1. Ngwaga, T. et al. (2023). Effector-mediated subversion of proteasome activator (PA)28αβ enhances host defense against Legionella pneumophila under inflammatory and oxidative stress conditions. PLoS Pathog. 19(6):e1011473. doi: 10.1371/journal.ppat.1011473.
  2. Capó, X. et al. (2023). Hyperbaric Oxygen Therapy Reduces Oxidative Stress and Inflammation, and Increases Growth Factors Favouring the Healing Process of Diabetic Wounds. Int J Mol Sci. 24(8):7040. doi: 10.3390/ijms24087040.
  3. Yamashima, T. et al. (2023). Vegetable Oil-Peroxidation Product 'Hydroxynonenal' Causes Hepatocyte Injury and Steatosis via Hsp70.1 and BHMT Disorders in the Monkey Liver. Nutrients. 15(8):1904. doi: 10.3390/nu15081904.
  4. Pollock, N. et al. (2023). Deletion of Sod1 in Motor Neurons Exacerbates Age-Related Changes in Axons and Neuromuscular Junctions in Mice. eNeuro. 10(3):ENEURO.0086-22.2023. doi: 10.1523/ENEURO.0086-22.2023.
  5. Tsuzuki, T. et al. (2022). Exercise training improves obesity-induced inflammatory signaling in rat brown adipose tissue. Biochem Biophys Rep. doi: 10.1016/j.bbrep.2022.101398.
  6. Zhou, Z.D. et al. (2022). The role of tyrosine hydroxylase-dopamine pathway in Parkinson's disease pathogenesis. Cell Mol Life Sci. 79(12):599. doi: 10.1007/s00018-022-04574-x.
  7. Musci, R.V. et al. (2022). Phytochemical compound PB125 attenuates skeletal muscle mitochondrial dysfunction and impaired proteostasis in a model of musculoskeletal decline. J Physiol. doi: 10.1113/JP282273.
  8. Monserrat-Mesquida, M. et al. (2022). A Greater Improvement of Intrahepatic Fat Contents after 6 Months of Lifestyle Intervention Is Related to a Better Oxidative Stress and Inflammatory Status in Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel). 11(7):1266. doi: 10.3390/antiox11071266.
  9. Yoshihara, T. et al. (2022). Losartan treatment attenuates hindlimb unloading-induced atrophy in the soleus muscle of female rats via canonical TGF-β signaling. J Physiol Sci. 72(1):6. doi: 10.1186/s12576-022-00830-8.
  10. Packialakshmi, B. et al. (2022). Tourniquet-induced lower limb ischemia/reperfusion reduces mitochondrial function by decreasing mitochondrial biogenesis in acute kidney injury in mice. Physiol Rep. 10(3):e15181. doi: 10.14814/phy2.15181.
  11. Tian, L. et al. (2022). Microtubule Affinity-Regulating Kinase 4 Promotes Oxidative Stress and Mitochondrial Dysfunction by Activating NF-κB and Inhibiting AMPK Pathways in Porcine Placental Trophoblasts. Biomedicines. 10(1):165. doi: 10.3390/biomedicines10010165.
  12. Daussin, F.N. et al. (2021). Dietary Cocoa Flavanols Enhance Mitochondrial Function in Skeletal Muscle and Modify Whole-Body Metabolism in Healthy Mice. Nutrients. 13(10):3466. doi: 10.3390/nu13103466.
  13. Hahn, D. et al. (2021). Nox4 Knockout Does Not Prevent Diaphragm Atrophy, Contractile Dysfunction, or Mitochondrial Maladaptation in the Early Phase Post-Myocardial Infarction in Mice. Cell Physiol Biochem. 55(4):489-504. doi: 10.33594/000000400.
  14. Jeong, J. et al. (2021). The butyrophilin 1a1 knockout mouse revisited: Ablation of Btn1a1 leads to concurrent cell death and renewal in the mammary epithelium during lactation. FASEB Bioadv. doi: 10.1096/fba.2021-00059.
  15. Oliva Chávez, A.S. et al. (2021). Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection. Nat Commun. 12(1):3696. doi: 10.1038/s41467-021-23900-8.
  16. Monserrat-Mesquida, M. et al. (2020). Oxidative Stress and Pro-Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel). 9(8):E759. doi: 10.3390/antiox9080759.
  17. Yagisawa, Y. et al. (2020). Effects of occlusal disharmony on cardiac fibrosis, myocyte apoptosis and myocyte oxidative DNA damage in mice. PLoS One. 15(7):e0236547. doi: 10.1371/journal.pone.0236547.
  18. Song, W. et al. (2020). Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation. Redox Biol. doi: 10.1016/j.redox.2020.101559.
  19. Capó, X. et al. (2020). Calorie Restriction Improves Physical Performance and Modulates the Antioxidant and Inflammatory Responses to Acute Exercise. Nutrients. 12:930. doi: 10.3390/nu12040930.
  20. Pons, D.G. et al. (2020). Micronutrients Selenomethionine and Selenocysteine Modulate the Redox Status of MCF-7 Breast Cancer Cells. Nutrients. 12(3). pii: E865. doi: 10.3390/nu12030865.
  21. Tian, L. et al. (2020). Impaired Mitochondrial Function Results from Oxidative Stress in the Full-Term Placenta of Sows with Excessive Back-Fat. Animals (Basel). 10(2). pii: E360. doi: 10.3390/ani10020360.
  22. Geicu, O.I. et al. (2020). Dietary AGEs involvement in colonic inflammation and cancer: insights from an in vitro enterocyte model. Sci Rep. 10(1):2754. doi: 10.1038/s41598-020-59623-x.
  23. Yin, B. et al. (2019). PtomtAPX, a mitochondrial ascorbate peroxidase, plays an important role in maintaining the redox balance of Populus tomentosa Carr. Sci Rep. 9(1):19541. doi: 10.1038/s41598-019-56148-w.
  24. Adeluyi, A. et al. (2019). Microglia morphology and proinflammatory signaling in the nucleus accumbens during nicotine withdrawal. Sci Adv. 5(10):eaax7031. doi: 10.1126/sciadv.aax7031.
  25. Koike, S. et al. (2019). Age-related alteration in the distribution of methylglyoxal and its metabolic enzymes in the mouse brain. Brain Res Bull. 144:164-170. doi: 10.1016/j.brainresbull.2018.11.025.
  26. Park, A.M. et al. (2018). Heat shock protein 27 promotes cell cycle progression by down-regulating E2F transcription factor 4 and retinoblastoma family protein p130. J Biol Chem. 293(41):15815-15826. doi: 10.1074/jbc.RA118.003310.
  27. Hernández-López, R. et al. (2018). Non-tumor adjacent tissue of advanced stage from CRC shows activated antioxidant response. Free Radic Biol Med. 126:249-258. doi: 10.1016/j.freeradbiomed.2018.08.021.
  28. Harmon, D.B. et al. (2018). Adipose tissue-derived free fatty acids initiate myeloid cell accumulation in mouse liver in states of lipid oversupply. Am J Physiol Endocrinol Metab. 315(5):E758-E770. doi: 10.1152/ajpendo.00172.2018.
  29. Wei, Y. et al. (2018). Oxidation of KCNB1 channels in the human brain and in mouse model of Alzheimer's disease. Cell Death Dis. 9(8):820. doi: 10.1038/s41419-018-0886-1.
  30. Oliveira, A.N. et al. (2018). Effect of Tim23 knockdown in vivo on mitochondrial protein import and retrograde signaling to the UPRmt in muscle. Am J Physiol Cell Physiol. 315(4):C516-C526. doi: 10.1152/ajpcell.00275.2017.