HDL and LDL/VLDL Cholesterol Assay Kit

HDL and LDL/VLDL Cholesterol Assay Kit
  • Allows you to separate and independently test HDL and LDL/VLDL fractions
  • Suitable for use with serum or plasma
  • Cholesterol standard included

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

HDL and LDL/VLDL Cholesterol Assay Kit
Catalog Number
STA-391
Size
192 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$610.00
Product Details

Cell Biolabs’ HDL and LDL/VLDL Cholesterol Assay Kit measures the cholesterol levels of HDL and LDL/VLDL fractions in serum or plasma. The assay will detect total cholesterol (cholesteryl esters plus free cholesterol) in the presence of cholesterol esterase or only free cholesterol in the absence of the esterase enzyme.

Assay Principle for the Total Cholesterol Assay (Fluorometric).

Cholesterol Standard Curve.

Cholesterol Values of Human Serum Tested Using the HDL and LDL/VLDL Cholesterol Assay Kit.

Recent Product Citations
  1. Lin, B. et al. (2023) Vitamin E Supplement Protects Against Gestational Diabetes Mellitus in Mice Through nuclear factor-erythroid factor 2-related factor 2/heme oxygenase-1 Signaling Pathway. Diabetes Metab Syndr Obes. 16:565-574. doi: 10.2147/DMSO.S397255.
  2. Lee, H.B. et al. (2023). Dietary Nε-(carboxymethyl)lysine is a trigger of non-alcoholic fatty liver disease under high-fat consumption. Food Chem Toxicol. doi: 10.1016/j.fct.2023.114010.
  3. Dewidar, B. et al. (2023). Alterations of hepatic energy metabolism in murine models of obesity, diabetes and fatty liver diseases. EBioMedicine. doi: 10.1016/j.ebiom.2023.104714.
  4. Tokuoka, S.M. et al. (2022). Lipid Profiles of Human Serum Fractions Enhanced with CD9 Antibody-Immobilized Magnetic Beads. Metabolites. 12(3):230. doi: 10.3390/metabo12030230.
  5. Gomaa, H.F. et al. (2022).  Protective efficiency of Chelidonium majus extract against hepatoimmune and DNA changes induced by aflatoxin B1. J. Appl. Pharm. Sci. 12(03): 140-149. doi: 10.7324/JAPS.2022.120315.
  6. Lee, H.B. et al. (2022). Dietary rhamnogalacturonan-Ⅰ rich extracts of molokhia ameliorate high fat diet-induced obesity and gut dysbiosis. J Nutr Biochem. doi: 10.1016/j.jnutbio.2022.108954.
  7. Ochiai, A. et al. (2021). Kaempferol ameliorates symptoms of metabolic syndrome by improving blood lipid profile and glucose tolerance. Biosci Biotechnol Biochem. doi: 10.1093/bbb/zbab132.
  8. Devarshi, P.P. et al. (2021). A single bout of cycling exercise induces nucleosome repositioning in the skeletal muscle of lean and overweight/obese individuals. Diabetes Obes Metab. doi: 10.1111/dom.14541.
  9. Weiss, M. et al. (2021). Protective effects of the imidazoline-like drug lnp599 in a marmoset model of obesity-induced metabolic disorders. Int J Obes (Lond). doi: 10.1038/s41366-021-00786-6.
  10. Alabi, A. et al. (2021). Membrane type 1 matrix metalloproteinase promotes LDL receptor shedding and accelerates the development of atherosclerosis. Nat Commun. 12(1):1889. doi: 10.1038/s41467-021-22167-3.
  11. Paul, S. et al. (2020). D4F prophylaxis enables redox and energy homeostasis while preventing inflammation during hypoxia exposure. Biomed Pharmacother. doi: 10.1016/j.biopha.2020.111083.
  12. Omidiwura, B.R.O. et al. (2020). Cholesterol Profile and Gut Microbial Population of Laying Hens Treated with L-Dopa Supplemented Diets. J. World Poult. Res. 10(2):342-347. doi: 10.36380/jwpr.2020.39.
  13. Shin, Y.K. et al. (2020). Sex differences in cardio-metabolic and cognitive parameters in rats with high-fat diet-induced metabolic dysfunction. Exp Biol Med (Maywood). doi: 10.1177/1535370220920552.
  14. Gangwar, A. et al. (2020). Intermittent hypoxia modulates redox homeostasis, lipid metabolism associated inflammatory processes and redox post-translational modifications: Benefits at high altitude. Sci Rep. 10(1):7899. doi: 10.1038/s41598-020-64848-x.
  15. Kim, S. et al. (2020). Anti-adipogenic effects of viscothionin in 3T3-L1 adipocytes and high fat diet induced obesity mice. Appl Biol Chem. 63:9. doi: 10.1186/s13765-020-0489-2.
  16. Shin, Y.K. et al. (2019). Beneficial effects of Codonopsis lanceolata extract on systolic blood pressure levels in prehypertensive adults: A double-blind, randomized controlled trial. Phytother Res. doi: 10.1002/ptr.6520.
  17. Nafiu, A.B. et al. (2019). Anti-androgenic and insulin-sensitizing actions of Nigella sativa oil improve polycystic ovary and associated dyslipidemia and redox disturbances. J Complement Med Res. 10(4): 186-199. doi:10.5455/jcmr.20190613045154.
  18. Martinez, N. et al. (2019). mTORC2/Akt activation in adipocytes is required for adipose tissue inflammation in tuberculosis. EBioMedicine. pii: S2352-3964(19)30433-5. doi: 10.1016/j.ebiom.2019.06.052.
  19. Gu, C. et al. (2019). Effect of a polyphenol-rich plant matrix on colonic digestion and plasma antioxidant capacity in a porcine model. Journal of Functional Foods. 57:211–221. doi:10.1016/j.jff.2019.04.006.
  20. Campbell, M.S. et al. (2019). Influence of enhanced bioavailable curcumin on obesity-associated cardiovascular disease risk factors and arterial function: A double-blinded, randomized, controlled trial. Nutrition. 62:135-139. doi: 10.1016/j.nut.2019.01.002.
  21. Skinner, R.C. et al. (2018). Apple Pomace Consumption Favorably Alters Hepatic Lipid Metabolism in Young Female Sprague-Dawley Rats Fed a Western Diet. Nutrients. 10(12). pii: E1882. doi: 10.3390/nu10121882.
  22. Singh, A. et al. (2018). Inulin fiber dose-dependently modulates energy balance, glucose tolerance, gut microbiota, hormones and diet preference in high-fat-fed male rats. J Nutr Biochem. 59:142-152. doi: 10.1016/j.jnutbio.2018.05.017.
  23. Lee, E-S. et al (2018). Amelioration of obesity in high-fat diet-fed mice by chestnut starch modified by amylosucrase from Deinococcus geothermalis. Food Hydrocolloids. 75: 22-32.
  24. Jang, H. et al. (2017). The herbal formula KH-204 is protective against erectile dysfunction by minimizing oxidative stress and improving lipid profiles in a rat model of erectile dysfunction induced by hypercholesterolaemia. BMC Complement Altern Med.17(1):129.
  25. Gamal, S. M. et al. (2016). Effect of gamma-carboxylase inhibition on serum osteocalcin may be partially protective against developing diabetic cardiomyopathy in type 2 diabetic rats. Diab Vasc Dis Res. doi:10.1177/1479164116653239.
  26. Angelovich, T. A. et al. (2016). Ex vivo foam cell formation is enhanced in monocytes from older individuals by both extrinsic and intrinsic mechanisms. Exp Gerontol. doi:10.1016/j.exger.2016.04.006.
  27. Ali, D. A. et al. (2016). Structural and functional abnormalities of hepatic tissues of male Wistar rats fed on hyper whey and super amino anabolic protein. Nutrition. doi:10.1016/j.nut.2016.01.017.
  28. Sessions-Bresnahan, D. R. et al. (2015). Effect of obesity on the preovulatory follicle and lipid fingerprint of equine oocytes. Biol Reprod. doi:10.1095/​biolreprod.115.130187.
  29. Maisa, A. et al. (2015). Monocytes from HIV-infected individuals show impaired cholesterol efflux and increased foam cell formation after transendothelial migration. AIDS.  doi:10.1097/QAD.0000000000000739.
  30. O’Hare, E. A. et al. (2014). Disruption of ldlr causes increased LDL-c and vascular lipid accumulation in a zebrafish model of hypercholesterolemia. J Lipid Res. 55:2242-2253.