Total Cholesterol Assay Kits

Total Cholesterol Assay Kits
  • Suitable for use with serum, plasma, lysate, or tissue samples
  • Cholesterol standard included
  • Available with colorimetric or fluorometric detection

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Total Cholesterol Assay Kit (Fluorometric)
Catalog Number
STA-390
Size
192 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$460.00
Total Cholesterol Assay Kit (Colorimetric)
Catalog Number
STA-384
Size
192 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$460.00
Product Details

Cell Biolabs’ Total Cholesterol Assay Kits measure the total cholesterol within serum, plasma, cell lysate, or tissue samples. The assays will detect total cholesterol (cholesteryl esters plus free cholesterol) in the presence of cholesterol esterase or only free cholesterol in the absence of the esterase enzyme.

Assay Principle for the Total Cholesterol Assay (Fluorometric).

Cholesterol Standard Curve.

Recent Product Citations
  1. Tran, G.B. et al. (2023). Caffeine supplementation and FOXM1 inhibition enhance the antitumor effect of statins in neuroblastoma. Cancer Res. doi: 10.1158/0008-5472.CAN-22-3450 (#STA-390).
  2. Tashiro, J. et al. (2023). CYP11A1 silencing suppresses HMGCR expression via cholesterol accumulation and sensitizes CRPC cell line DU-145 to atorvastatin. J Pharmacol Sci. 153(3):104-112. doi: 10.1016/j.jphs.2023.08.002 (#STA-384).
  3. Nopparat, J. et al. (2023). Probiotics of Lacticaseibacillus paracasei SD1 and Lacticaseibacillus rhamnosus SD11 attenuate inflammation and β-cell death in streptozotocin-induced type 1 diabetic mice. PLoS One. 18(4):e0284303. doi: 10.1371/journal.pone.0284303 (#STA-384).
  4. Yang, X. et al. (2023). Sprouty1 has a protective role in atherogenesis and modifies the migratory and inflammatory phenotype of vascular smooth muscle cells. Atherosclerosis. 373:17-28. doi: 10.1016/j.atherosclerosis.2023.04.007 (#STA-384).
  5. Mou, Y. et al. (2023). Chenodeoxycholic acid rescues axonal degeneration in induced pluripotent stem cell-derived neurons from spastic paraplegia type 5 and cerebrotendinous xanthomatosis patients. Orphanet J Rare Dis. 18(1):72. doi: 10.1186/s13023-023-02666-w (#STA-384).
  6. Zahid, S. et al. (2023). The Geroprotective Drug Candidate CMS121 Alleviates Diabetes, Liver Inflammation, and Renal Damage in db/db Leptin Receptor Deficient Mice. Int J Mol Sci. 24(7):6828. doi: 10.3390/ijms24076828 (#STA-390).
  7. Bashir, K.M.I. et al. (2023). Efficacy Confirmation Test of Black Cumin (Nigella sativa L.) Seeds Extract Using a High-Fat Diet Mouse Model. Metabolites. 13(4):501. doi: 10.3390/metabo13040501 (#STA-384).
  8. Abdelwahed, K.S. et al. (2023). Pseurotin A Validation as a Metastatic Castration-Resistant Prostate Cancer Recurrence-Suppressing Lead via PCSK9-LDLR Axis Modulation. Mar Drugs. 21(4):215. doi: 10.3390/md21040215 (#STA-384).
  9. Fahrner, A. et al. (2023). microRNA-501 controls myogenin+/CD74+ myogenic progenitor cells during muscle regeneration. Mol Metab. 71:101704. doi: 10.1016/j.molmet.2023.101704 (#STA-384).
  10. Lin, B. et al. (2023) Vitamin E Supplement Protects Against Gestational Diabetes Mellitus in Mice Through nuclear factor-erythroid factor 2-related factor 2/heme oxygenase-1 Signaling Pathway. Diabetes Metab Syndr Obes. 16:565-574. doi: 10.2147/DMSO.S397255 (#STA-384).
  11. Begemann, K. et al. (2023). Rest phase snacking increases energy resorption and weight gain in male mice. Mol Metab. 69:101691. doi: 10.1016/j.molmet.2023.101691 (#STA-384).
  12. Bedsted, A.E. et al. (2023). Detection of Porcine Deltacoronavirus RNA in the Upper and Lower Respiratory Tract and Biliary Fluid and the Effect of Infection on Serum Cholesterol Levels and Blood T Cell Population Frequencies in Gnotobiotic Piglets. Vet Sci. 10(2):117. doi: 10.3390/vetsci10020117 (#STA-384).
  13. Landowski, M. et al. (2023). Transmembrane protein 135 regulates lipid homeostasis through its role in peroxisomal DHA metabolism. Commun Biol. 6(1):8. doi: 10.1038/s42003-022-04404-7 (#STA-384).
  14. Moreau, F. et al. (2023). Liver-specific FGFR4 knockdown in mice on an HFD increases bile acid synthesis and improves hepatic steatosis. J Lipid Res. 64(2):100324. doi: 10.1016/j.jlr.2022.100324 (#STA-384).
  15. Pathak, R. et al. (2022). Prolonged effects of DPP-4 inhibitors on steato-hepatitic changes in Sprague-Dawley rats fed a high-cholesterol diet. Inflamm Res. doi: 10.1007/s00011-022-01572-4 (#STA-384).
  16. Bhat, N. et al. (2022). TCF7L2 transcriptionally regulates Fgf15 to maintain bile acid and lipid homeostasis through gut-liver crosstalk. FASEB J. 36(3):e22185. doi: 10.1096/fj.202101607R (#STA-384).
  17. Ranasinghe, N. et al. (2022). Cholesterol Accumulation in Livers of Indian Medaka, Oryzias dancena, Acclimated to Fresh Water and Seawater. Front. Mar. Sci. doi: 10.3389/fmars.2022.891706 (#STA-384).
  18. Sugiyama, T. et al. (2022). Chemical chaperones ameliorate neurodegenerative disorders in Derlin-1-deficient mice via improvement of cholesterol biosynthesis. Sci Rep. 12(1):21840. doi: 10.1038/s41598-022-26370-0 (#STA-384).
  19. Pasello, M. et al. (2022). ABCA6 affects the malignancy of Ewing sarcoma cells via cholesterol-guided inhibition of the IGF1R/AKT/MDM2 axis. Cell Oncol (Dordr). doi: 10.1007/s13402-022-00713-5 (#STA-384).
  20. Shang, Y. et al. (2022). A CHCHD6-APP axis connects amyloid and mitochondrial pathology in Alzheimer's disease. Acta Neuropathol. doi: 10.1007/s00401-022-02499-0 (#STA-384).
  21. Hwang, S.M. et al. (2022). Preventive and Therapeutic Effects of Krill Oil on Obesity and Obesity-Induced Metabolic Syndromes in High-Fat Diet-Fed Mice. Mar Drugs. 20(8):483. doi: 10.3390/md20080483 (#STA-384).
  22. Cho, I.J. et al. (2022). Lemon Balm and Corn Silk Mixture Alleviates Metabolic Disorders Caused by a High-Fat Diet. Antioxidants (Basel). 11(4):730. doi: 10.3390/antiox11040730 (#STA-384).
  23. Choi, J.Y. et al. (2022). Combination Effects of Metformin and a Mixture of Lemon Balm and Dandelion on High-Fat Diet-Induced Metabolic Alterations in Mice. Antioxidants (Basel). 11(3):580. doi: 10.3390/antiox11030580 (#STA-384).
  24. Wang, Y. et al. (2021). N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism. Nat Commun. 12(1):6314. doi: 10.1038/s41467-021-26718-6 (#STA-390).
  25. Deng, Q. et al. (2020). Dietary Lactic Acid Bacteria Modulate Yolk Components and Cholesterol Metabolism by Hmgr Pathway in Laying Hens. Braz. J. Poult. 22(3):eRBCA-2020-1261. doi: 10.1590/1806-9061-2020-1261 (#STA-390).
  26. Singhal, A. et al. (2020). 2-Hydroxypropyl-gamma-cyclodextrin overcomes NPC1 deficiency by enhancing lysosome-ER association and autophagy. Sci Rep. 10(1):8663. doi: 10.1038/s41598-020-65627-4 (#STA-390).
  27. Kidnapillai, S. et al. (2019). Drugs Used in the Treatment of Bipolar Disorder and their Effects on Cholesterol Biosynthesis- A Possible Therapeutic Mechanism. World J Biol Psychiatry. doi: 10.1080/15622975.2019.1669823 (#STA-390).
  28. Le Menn, G. et al. (2019). Decrease in αβ/γδ T-cell ratio is accompanied by a reduction in high-fat diet-induced weight gain, insulin resistance, and inflammation. FASEB J. 33(2):2553-2562. doi: 10.1096/fj.201800696RR (#STA-390).
  29. Martiskainen H, et al. (2017). DHCR24 exerts neuroprotection upon inflammation-induced neuronal death. J Neuroinflammation. 14(1):215. doi: 10.1186/s12974-017-0991-6 (#STA-390).
  30. Hsieh, H.Y. et al. (2017). Quantification of Endogenous Cholesterol in Human Serum on Paper Using Direct Analysis in Real Time Mass Spectrometry. Anal Chem. 89(11):6146-6152. doi: 10.1021/acs.analchem.7b00943 (#STA-390).