Cdc42 Activation Assays

Cdc42 Activation Assays
  • Safe non-radioactive assay format
  • Colored agarose beads allow visual check
  • Fast results: 1 hour plus electrophoresis/blotting time
  • Compatible with human, mouse, and rat samples

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Cdc42 Activation Assay
Catalog Number
STA-402
Size
20 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$695.00
RhoA/Rac1/Cdc42 Activation Assay Combo Kit
Catalog Number
STA-405
Size
3 x 10 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$995.00
Rac1/Cdc42 Activation Assay Combo Kit
Catalog Number
STA-404
Size
2 x 20 assays
Detection
Immunoblot
Manual/Data Sheet Download
SDS Download
Price
$995.00
Product Details

Our Cdc42 Activation Assays use visible agarose beads to selectively precipitate the active form of Cdc42 protein. The precipitated small GTPase is then detected by Western blot using a Cdc42-specific antibody included in the kit.

If you are also studying Rac1 or RhoA, you may consider one of our economical combination kits.

Small GTPase Activation Assay Principle

Immunoblotting with the Rac Activation Assay. Lane 1: GTPase Immunoblot Positive Control. Lane 2: 293 cell lysate loaded with GDP and incubated with PAK1 PBD Agarose beads. Lane 3: 293 cell lysate loaded with GTPγS and incubated with PAK1 PBD Agarose beads.

Recent Product Citations
  1. Yuan, H. et al. (2023). Hypoxia-induced TMTC3 expression in esophageal squamous cell carcinoma potentiates tumor angiogenesis through Rho GTPase/STAT3/VEGFA pathway. J Exp Clin Cancer Res. 42(1):249. doi: 10.1186/s13046-023-02821-y (#STA-405).
  2. Kim, K.B. et al. (2022). WNT5A-RHOA signaling is a driver of tumorigenesis and represents a therapeutically actionable vulnerability in small cell lung cancer. Cancer Res. doi: 10.1158/0008-5472.CAN-22-1170 (#STA-402).
  3. Bijata, M. et al. (2022). Activation of the 5-HT7 receptor and MMP-9 signaling module in the hippocampal CA1 region is necessary for the development of depressive-like behavior. Cell Rep. 38(11):110532. doi: 10.1016/j.celrep.2022.110532 (#STA-402).
  4. Jaafar, L. et al. (2021). StarD13 differentially regulates migration and invasion in prostate cancer cells. Hum Cell. doi: 10.1007/s13577-020-00479-8 (#STA-405).
  5. Ghassibe-Sabbagh, M. et al. (2021). Altered regulation of cell migration in IRF6-mutated orofacial cleft patients-derived primary cells reveals a novel role of Rho GTPases in cleft/lip palate development. Cells Dev. doi: 10.1016/j.cdev.2021.203674 (#STA-405).
  6. Li, M.J. et al. (2021). Ezrin Promotes the Proliferation, Migration, and Invasion of Ovarian Cancer Cells. Biomed. Environ. Sci. 34(2):139-151. doi: 10.3967/bes2021.020 (#STA-405).
  7. Matarrese, P. et al. (2021). Physical Interaction between HPV16E7 and the Actin-Binding Protein Gelsolin Regulates Epithelial-Mesenchymal Transition via HIPPO-YAP Axis. Cancers (Basel). 13(2):353. doi: 10.3390/cancers13020353 (#STA-405).
  8. El-Mais, N. et al. (2020). Human recombinant arginase I [HuArgI (Co)-PEG5000]-induced arginine depletion inhibits ovarian cancer cell adhesion and migration through autophagy-mediated inhibition of RhoA. J Ovarian Res. 14(1):13. doi: 10.1186/s13048-021-00767-3 (#STA-405).
  9. El‑Chami, D. et al. (2021). Recombinant anthrax lethal toxin inhibits cell motility and invasion in breast cancer cells through the dysregulation of Rho GTPases. Oncol Lett. 21(2):1-7. doi:  10.3892/ol.2020.12424 (#STA-405).
  10. Yuan, Z. et al. (2020). RAB5A promotes the formation of filopodia in pancreatic cancer cells via the activation of cdc42 and β1-integrin. Biochem Biophys Res Commun. 535:54-59. doi: 10.1016/j.bbrc.2020.12.022 (#STA-402).
  11. Al Haddad, M. et al. (2020). Differential regulation of rho GTPases during lung adenocarcinoma migration and invasion reveals a novel role of the tumor suppressor StarD13 in invadopodia regulation. Cell Commun Signal. 18(1):144. doi: 10.1186/s12964-020-00635-5 (#STA-405).
  12. Badaoui, M. et al. (2020). Vav3 Mediates Pseudomonas aeruginosa Adhesion to the Cystic Fibrosis Airway Epithelium. Cell Rep. 32(1):107842. doi: 10.1016/j.celrep.2020.107842 (#STA-405).
  13. Rajakylä, E.K. et al. (2020). Assembly of Peripheral Actomyosin Bundles in Epithelial Cells Is Dependent on the CaMKK2/AMPK Pathway. Cell Rep. 30(12):4266-4280.e4. doi: 10.1016/j.celrep.2020.02.096 (#STA-405).
  14. McGuire, S. et al. (2019). Inhibition of fascin in cancer and stromal cells blocks ovarian cancer metastasis. Gynecol Oncol. pii: S0090-8258(19)30059-9. doi: 10.1016/j.ygyno.2019.01.020 (#STA-402).
  15. Mohapatra, P. et al. (2019). Combination therapy targeting the elevated interleukin-6 level reduces invasive migration of BRAF inhibitor-resistant melanoma cells. Mol Oncol. 13(2):480-494. doi: 10.1002/1878-0261.12433 (#STA-404).
  16. Hu, H.F. et al. (2018). Comparative Proteomics Analysis Identifies Cdc42-Cdc42BPA Signaling as Prognostic Biomarker and Therapeutic Target for Colon Cancer Invasion. J Proteome Res. 17(1):265-275. doi: 10.1021/acs.jproteome.7b00550 (#STA-402).
  17. Stocker, T.J. et al. (2018). The Actin Regulator Coronin-1A Modulates Platelet Shape Change and Consolidates Arterial Thrombosis. Thromb Haemost. 118(12):2098-2111. doi: 10.1055/s-0038-1675604 (#STA-404).
  18. Khanna, P. et al. (2018). GRAMD1B regulates cell migration in breast cancer cells through JAK/STAT and Akt signaling. Sci Rep. 8(1):9511. doi: 10.1038/s41598-018-27864-6 (#STA-404).
  19. Chang, F. et al. (2017). MTA promotes chemotaxis and chemokinesis of immune cells through distinct calcium-sensing receptor signaling pathways. Biomaterials. 150:14-24. doi: 10.1016/j.biomaterials.2017.10.009 (#STA-402).
  20. Hong, J. H. et al. (2016). Regulation of the actin cytoskeleton by the Ndel1-Tara complex is critical for cell migration. Sci Rep. doi:10.1038/srep31827 (#STA-402).
  21. Aldinucci, A. et al. (2016). Histamine regulates actin cytoskeleton in human Toll like receptor 4 activated monocyte derived dendritic cells tuning CD4+ T lymphocyte response. J Biol Chem. doi:10.1074/jbc.M116.720680 (#STA-402).
  22. Tanaka, U. et al. (2015). Sprouty2 inhibition promotes proliferation and migration of periodontal ligament cells. Oral Dis. doi: 10.1111/odi.12369 (#STA-404).
  23. Sherchan, P. et al. (2015). Recombinant Slit2 attenuates neuroinflammation after surgical brain injury by inhibiting peripheral immune cell infiltration via Robo1-srGAP1 pathway in a rat model. Neurobiol Dis. 85:164-173 (#STA-402).
  24. Galic, M. et al. (2014). Dynamic Recruitment of the Curvature-Sensitive Protein ArhGAP44 to Nanoscale Membrane Deformations Limits Exploratory Filopodia Initiation in Neurons. Elife. doi: 10.7554/eLife.03116 (#STA-404).
  25. Sahu, M. et al. (2014). Lens specific RLIP76 transgenic mice show a phenotype similar to microphthalmiaExp Eye Res. 118:125-134 (#STA-402).
  26. Holmes,K.M. et al.(2012).Insulin-Like Growth Factor-Binding Protein 2-Driven Glioma Progression is Prevented by Blocking a Clinically Significant Integrin, Integrin-Linked Kinase, and NF-B Network. Proc Natl Acad Sci . 109:2168-2173 (#STA-404).
  27. Chen, H. et al. (2010). Integrity of SOS1/EPS8/ABI1 Tri-Complex Determines Ovarian Cancer Metastasis. Cancer Res. 70:9979-9990 (#STA-404).
  28. Sultana, H. et al. (2010). Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. J. Exp. Med. 10.1084/jem.20100276 (#STA-404).
  29. Pandey, D. et al. (2009). Unraveling a novel Rac1-mediated signaling pathway that regulates cofilin dephosphorylation and secretion in thrombin stimulated platelets. Blood. 114:415-424 (#STA-404).
  30. Lorger, M. et al. (2006). Regulation of epithelial wound closure and intercellular adhesion by interaction of AF6 with actin cytoskeleton. J. of Cell Science. 119:3385-3398 (#STA-404).