Tumor Transendothelial Migration Assay

Tumor Transendothelial Migration Assay
  • Quantify interactions between endothelium and tumor cells
  • Fully quantify cell transmigration with no manual cell counting
  • Highly sensitive results on a fluorescence plate reader

 

Frequently Asked Questions about this product

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ Tumor Transendothelial Migration Assay
Catalog Number
CBA-216
Size
24 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$695.00
Product Details

Cancer cell transmigration, particularly extravasation, is an important step in cancer metastasis. It is the final step in a cascade of interactions between cells and the endothelium.

CytoSelect™ Tumor Transendothelial Migration Assay provides a robust system for the quantitative determination of transmigrations and interactions between endothelium and tumor cells. Migratory cells may be quantified on a fluorescence plate reader. Kits use 24-well plates with 8 µm pore size membrane inserts.

Recent Product Citations
  1. Huang, M.B. et al. (2022). Novel secretion modification region (SMR) peptide exhibits anti-metastatic properties in human breast cancer cells. Sci Rep. 12(1):13204. doi: 10.1038/s41598-022-17534-z.
  2. Park, G.B. et al. (2021). TrkB/C-induced HOXC6 activation enhances the ADAM8-mediated metastasis of chemoresistant colon cancer cells. Mol Med Rep. 23(6):423. doi: 10.3892/mmr.2021.12062.
  3. Sasahira, T. et al. (2021). SERPINE2 is an oral cancer-promoting factor that induces angiogenesis and lymphangiogenesis. Int J Clin Oncol. doi: 10.1007/s10147-021-01970-4.
  4. Sasahira, T. et al. (2021). Identification of oral squamous cell carcinoma markers MUC2 and SPRR1B downstream of TANGO. J Cancer Res Clin Oncol. doi: 10.1007/s00432-021-03568-9.
  5. Kong, J. et al. (2020). ICAM-1 Activates Platelets and Promotes Endothelial Permeability through VE- Cadherin after Insufficient Radiofrequency Ablation. Adv. Sci. doi: 10.1002/advs.202002228.
  6. Park, G.B. et al. (2020). GLUT5 regulation by AKT1/3-miR-125b-5p downregulation induces migratory activity and drug resistance in TLR-modified colorectal cancer cells. Carcinogenesis. doi: 10.1093/carcin/bgaa074.
  7. Shimomura, H. et al. (2019). Non-SMC Condensin I Complex Subunit H (NCAPH) Is Associated with Lymphangiogenesis and Drug Resistance in Oral Squamous Cell Carcinoma. J Clin Med. 9(1). pii: E72. doi: 10.3390/jcm9010072.
  8. Park, G.B. et al. (2019). Modified TLR-mediated downregulation of miR-125b-5p enhances CD248 (endosialin)-induced metastasis and drug resistance in colorectal cancer cells. Mol Carcinog. doi: 10.1002/mc.23137.
  9. Wang, S.Y. et al. (2019). High Expression of MicroRNA-196a is Associated with Progression of Hepatocellular Carcinoma in Younger Patients. Cancers (Basel). 11(10). pii: E1549. doi: 10.3390/cancers11101549.
  10. Park, G.B. et al. (2019). MicroRNA-503-5p Inhibits the CD97-Mediated JAK2/STAT3 Pathway in Metastatic or Paclitaxel-Resistant Ovarian Cancer Cells. Neoplasia. 21(2):206-215. doi: 10.1016/j.neo.2018.12.005.
  11. Fukushima, R. et al. (2018). Overexpression of Translocation Associated Membrane Protein 2 Leading to Cancer-Associated Matrix Metalloproteinase Activation as a Putative Metastatic Factor for Human Oral Cancer. J Cancer. 9(18):3326-3333. doi: 10.7150/jca.25666.
  12. Toeda, Y. et al. (2018). FBLIM1 enhances oral cancer malignancy via modulation of the epidermal growth factor receptor pathway. Mol Carcinog. 57(12):1690-1697. doi: 10.1002/mc.22889.
  13. Sasahira, T. et al. (2018). NIPA-like domain containing 1 is a novel tumor-promoting factor in oral squamous cell carcinoma. J Cancer Res Clin Oncol. 144(5):875-882. doi: 10.1007/s00432-018-2612-x.
  14. Park, G.B. et al. (2017). Insulin-like growth factor-1 activates different catalytic subunits p110 of PI3K in a cell-type-dependent manner to induce lipogenesis-dependent epithelial-mesenchymal transition through the regulation of ADAM10 and ADAM17. Mol Cell Biochem. doi: 10.1007/s11010-017-3148-0.
  15. Choong L.Y. et al. (2017). Lee WH, et al. (2017). TRPV4 plays a role in breast cancer cell migration via Ca2+-dependent activation of AKT and downregulation of E-cadherin cell cortex protein. Oncogenesis. 6(5):e338. doi: 10.1038/oncsis.2017.39.
  16. Park, G.B. et al. (2017). PI3K Catalytic Isoform Alteration Promotes the LIMK1-related Metastasis Through the PAK1 or ROCK1/2 Activation in Cigarette Smoke-exposed Ovarian Cancer Cells. Anticancer Res. 37(4):1805-1818.
  17. Fife, C. M. et al. (2016). Stathmin mediates neuroblastoma metastasis in a tubulin-independent manner via RhoA/ROCK signaling and enhanced transendothelial migration. Oncogene. doi:10.1038/onc.2016.220.
  18. Waghray, M. et al. (2016). GM-CSF mediates mesenchymal-epithelial crosstalk in pancreatic cancer. Cancer Discov. Doi:10.1158/2159-8290.CD-15-0947.
  19. Park, G. B. et al. (2015). Regulation of ADAM10 and ADAM17 by sorafenib inhibits epithelial-to-mesenchymal transition in Epstein-Barr virus–infected retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 56:5162-5173.
  20. Park, G. B. et al. (2015). Silencing of galectin-3 represses osteosarcoma cell migration and invasion through inhibition of FAK/Src/Lyn activation and β-catenin expression and increases susceptibility to chemotherapeutic agents.Int J Oncol. 46:185-194.
  21. Choi, S. H. et al. (2014). MMP9 processing of HSPB1 regulates tumor progression. PLoS One.  9:e85509.
  22. Haidari, M. et al. (2014). Disruption of endothelial adherens junctions by high glucose is mediated by protein kinase C-β-dependent vascular endothelial cadherin tyrosine phosphorylation. Cardiovasc Diabetol. 13:112.
  23. Park, G.B. et al. (2014). The Epstein-Barr virus causes epithelial-mesenchymal transition in human corneal epithelial cells via Syk/Src and Akt/Erk signaling pathways.Invest. Ophthalmol. Vis. Sci. 55:1770-1779.
  24. Xu, Z. et al. (2010). Role of Pancreatic Stellate Cells in Pancreatic Cancer Metastasis. Am. J. Pathol., 177:2585-2596.
  25. Yang, H. and H.E. Grossniklaus (2010). Constitutive Overexpression of Pigment Epithelium Derived Factor Inhibition of Ocular Melanoma Growth and Metastasis. Invest. Ophthalmol. Vis. Sci. 51:28-34.
  26. Liu, K. et al. (2007). Lentivirus Mediated Gene Transfer of PEDF Results in Decreased Uveal Melanoma Transendothelial Migration. Invest. Opthalmol. Vis. Sci. 48:5244.