Intracellular ROS Assay

Intracellular ROS Assay
  • Quick ~1 hour protocol
  • Highly sensitive to 10 pM
  • Detects the presence of various ROS species

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence)
Catalog Number
STA-342
Size
96 Assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$585.00
OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence)
Catalog Number
STA-342-5
Size
5 x 96 Assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$2,480.00
OxiSelect™ Intracellular ROS Assay Kit (Green Fluorescence), Trial Size
Catalog Number
STA-342-T
Size
20 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$295.00
Product Details

The OxiSelect™ ROS Assay Kit is a cell-based assay for measuring hydroxyl, peroxyl, and other reactive oxygen species activity within a cell. The assay employs the cell-permeable fluorogenic probe DCFH-DA, which diffuses into cells and is deacetylcated by cellular esterases into the non-fluorescent DCFH (Figure 1). In the presence of ROS, DCFH is rapidly oxidized to highly fluorescent DCF. Fluorescence is read on a standard fluorometric plate reader.

Assay Principle.

ROS in HeLa Cells Treated with Hydrogen Peroxide. 50,000 HeLa cells in a 96-well plate were pretreated with 1 mM DCFH-DA for 60 minutes at 37ºC. Cells were then treated with hydrogen peroxide for 20 minutes.

Recent Product Citations
  1. Abd-Elraoof, W.A. et al. (2023). Characterization and antimicrobial activity of a chitosan-selenium nanocomposite biosynthesized using Posidonia oceanica. RSC Adv. 13(37):26001-26014. doi: 10.1039/d3ra04288j.
  2. Gallo, G. et al. (2023). Polymorphic variants at NDUFC2, encoding a mitochondrial complex I subunit, associate with cardiac hypertrophy in human hypertension. Mol Med. 29(1):107. doi: 10.1186/s10020-023-00701-x.
  3. Abu Bakar, S.A. et al. (2023). Goniothalamin Inhibits Cell Growth, Perturbs Cell Cycle and Induces Apoptosis in Human Osteosarcoma SAOS-2 Cells. JUMMEC. doi: 10.22452/jummec.sp2023no1.9.
  4. Yang, H. et al. (2023). MEK1 drives oncogenic signaling and interacts with PARP1 for genomic and metabolic homeostasis in malignant pleural mesothelioma. Cell Death Discov. 9(1):55. doi: 10.1038/s41420-023-01307-2.
  5. Zanotti, F. et al. (2023). Playing with Biophysics: How a Symphony of Different Electromagnetic Fields Acts to Reduce the Inflammation in Diabetic Derived Cells. Int J Mol Sci. 24(2):1754. doi: 10.3390/ijms24021754.
  6. Kang, J.R. et al. (2022). Anti-inflammatory activities of polysaccharides isolated from Aloe saponaria Haw grown in Namhae. Korean J Food Preserv. 29(7):1189-1200. doi: 10.11002/kjfp.2022.29.7.1189.
  7. Kim, Y.H. et al. (2022). The Antioxidant Auraptene Improves Aged Oocyte Quality and Embryo Development in Mice. Antioxidants (Basel). 12(1):87. doi: 10.3390/antiox12010087.
  8. Shimizu, H. et al. (2022). Dimethyl Fumarate Protects Retinal Pigment Epithelium from Blue Light-Induced Oxidative Damage via the Nrf2 Pathway. Antioxidants (Basel). 12(1):45. doi: 10.3390/antiox12010045.
  9. Michon, M. et al. (2022). In Vitro Biological Effects of E-Cigarette on the Cardiovascular System-Pro-Inflammatory Response Enhanced by the Presence of the Cinnamon Flavor. Toxics. 10(12):784. doi: 10.3390/toxics10120784.
  10. Kumawat, M. et al. (2022). Double functionalized haemocompatible silver nanoparticles control cell inflammatory homeostasis. PLoS One. 17(10):e0276296. doi: 10.1371/journal.pone.0276296.
  11. Campo-Sabariz, J. et al. (2022). Hydroxy-Selenomethionine, an Organic Selenium Source, Increases Selenoprotein Expression and Positively Modulates the Inflammatory Response of LPS-Stimulated Macrophages. Antioxidants. 11(10):1876. doi: 10.3390/antiox11101876.
  12. Park, S. et al. (2022). β-Escin overcomes trastuzumab resistance in HER2-positive breast cancer by targeting cancer stem-like features. Cancer Cell Int. 22(1):289. doi: 10.1186/s12935-022-02713-9.
  13. Walker, C.C.F. et al. (2022). Anandamide Alters Barrier Integrity of Bovine Vascular Endothelial Cells during Endotoxin Challenge. Antioxidants (Basel). 11(8):1461. doi: 10.3390/antiox11081461.
  14. Zwolak, I. & Wnuk, E. (2022). Effects of Sodium Pyruvate on Vanadyl Sulphate-Induced Reactive Species Generation and Mitochondrial Destabilisation in CHO-K1 Cells. Antioxidants. 11(5):909. doi: 10.3390/antiox11050909.
  15. Whitmore, C.A. et al. (2022). Longitudinal Consumption of Ergothioneine Reduces Oxidative Stress and Amyloid Plaques and Restores Glucose Metabolism in the 5XFAD Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel). 15(6):742. doi: 10.3390/ph15060742.
  16. Acharya, A. et al. (2022). Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes. iScience. doi: 10.1016/j.isci.2022.104577.
  17. Ahmed, S. et al. (2022). HMGB1-Like Dorsal Switch Protein 1 Triggers a Damage Signal in Mosquito Gut to Activate Dual Oxidase via Eicosanoids. J Innate Immun. doi: 10.1159/000524561.
  18. Taguchi, N. et al. (2022). Protective effect of hydroxygenkwanin against hair graying induced by X-ray irradiation and repetitive plucking. JID Innov. doi: 10.1016/j.xjidi.2022.100121.
  19. Tatullo, M. et al. (2022). Potential impact of functional biomolecules-enriched foods on human health: A randomized controlled clinical trial. Int J Med Sci. 19(3):563-571. doi: 10.7150/ijms.70435.
  20. Lu, G.L. et al. (2022). The Surface Amine Group of Ultrasmall Magnetic Iron Oxide Nanoparticles Produce Analgesia in the Spinal Cord and Decrease Long-Term Potentiation. Pharmaceutics. 14(2):366. doi: 10.3390/pharmaceutics14020366.
  21. Fares, M. et al. (2022). COL-3-Induced Molecular and Ultrastructural Alterations in K562 Cells. J Pers Med. 12(1):42. doi: 10.3390/jpm12010042.
  22. Tang, H. et al. (2021). Graphene Quantum Dots Obstruct the Membrane Axis of Alzheimer’s Amyloid Beta. Phys. Chem. Chem. Phys. doi: 10.1039/D1CP04246G.
  23. Truman, J.P. et al. (2021). 1-deoxysphinganine initiates adaptive responses to serine and glycine starvation in cancer cells via proteolysis of sphingosine kinase. J Lipid Res. doi: 10.1016/j.jlr.2021.100154.
  24. Raghubir, M. et al. (2021). Riluzole-induced apoptosis in osteosarcoma is mediated through Yes-associated protein upon phosphorylation by c-Abl Kinase. Sci Rep. 11(1):20974. doi: 10.1038/s41598-021-00439-8.
  25. Tylek, K. et al. (2021). Time-Dependent Protective and Pro-Resolving Effects of FPR2 Agonists on Lipopolysaccharide-Exposed Microglia Cells Involve Inhibition of NF-κB and MAPKs Pathways. Cells. 10(9):2373. doi: 10.3390/cells10092373.
  26. Nelson, M.T et al. (2021). Examining cellular responses to reconstituted antibody protein liquids. Sci Rep. 11(1):17066. doi: 10.1038/s41598-021-96375-8.
  27. Andrikopoulos, N. et al. (2021). Inhibition of Amyloid Aggregation and Toxicity with Janus Iron Oxide Nanoparticles. Chem. Mater. doi: 10.1021/acs.chemmater.1c01947.
  28. Tsutsumi-Arai, C. et al. (2021). Microbicidal effect of 405-nm blue LED light on Candida albicans and Streptococcus mutans dual-species biofilms on denture base resin. Lasers Med Sci. doi: 10.1007/s10103-021-03323-z.
  29. Ng, C.H. et al. (2021). Synthesis, characterization and multiple targeting with selectivity: Anticancer property of ternary metal phenanthroline-maltol complexes. J Inorg Biochem. 220:111453. doi: 10.1016/j.jinorgbio.2021.111453.
  30. Lakshmi, B.A. et al. (2021). Ruthenium(II)-Curcumin Liposome Nanoparticles: synthesis, characterization, and effects against cervical cancer. Colloids Surf B Biointerfaces. doi: 10.1016/j.colsurfb.2021.111773.