Platinum-E (Plat-E) Retroviral Packaging Cell Line

Platinum-E (Plat-E) Retroviral Packaging Cell Line
  • Higher retroviral yields: average titer 106 to 107 infectious units/mL with transient transfection
  • Longer stability: up to 4 months in the presence of drug selection
  • Produces ecotropic retrovirus, which can only readily infect mouse or rat cells

 

NOTE: Platinum Retroviral Packaging Cells are available for sale to academic, government and non-profit research laboratories. All other purchasers require a commercial license for all fields including research use. Please contact our Business Development department for license information.

 

Frequently Asked Questions about this product

General FAQs about Viral Gene Delivery

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Platinum-E Retroviral Packaging Cell Line, Ecotropic
Catalog Number
RV-101
Size
1 vial
Detection
N/A
Manual/Data Sheet Download
SDS Download
Price
$810.00
Product Details

Conventional cells used for retrovirus packaging, such as those based on NIH3T3 cells, have limited stability and produce relatively low yields of retrovirus, mainly due to the poor expression of retroviral structure proteins (gag, pol and env) in the cells.

The Platinum Retroviral Packaging Cell Lines are based on the 293T cell line. They exhibit longer stability and produce higher yields of retroviral structure proteins. Plat-E cells contain gag, pol and env genes, allowing retroviral packaging with a single plasmid transfection.

High Retroviral Yields with Plat-E cells. NIH3T3 cells and mouse ProB Ba/F3 cells.

High Retroviral Yields with Plat-E cells. NIH3T3 cells were infected with GFP retrovirus supernatant produced in Plat-E cells after transfection with pMX-GFP.

Recent Product Citations
  1. Larange, A. et al. (2023). A regulatory circuit controlled by extranuclear and nuclear retinoic acid receptor α determines T cell activation and function. Immunity. 56(9):2054-2069.e10. doi: 10.1016/j.immuni.2023.07.017.
  2. Rohatgi, N. et al. (2023). BAP1 promotes osteoclast function by metabolic reprogramming. Nat Commun. 14(1):5923. doi: 10.1038/s41467-023-41629-4.
  3. Ebner, J. et al. (2023). ABCC1 and glutathione metabolism limit the efficacy of BCL-2 inhibitors in acute myeloid leukemia. Nat Commun. 14(1):5709. doi: 10.1038/s41467-023-41229-2.
  4. Ceglia, S. et al. (2023). An epithelial cell-derived metabolite tunes immunoglobulin A secretion by gut-resident plasma cells. Nat Immunol. 24(3):531-544. doi: 10.1038/s41590-022-01413-w.
  5. Dou, Y. et al. (2023). Optogenetic engineering of STING signaling allows remote immunomodulation to enhance cancer immunotherapy. Nat Commun. 14(1):5461. doi: 10.1038/s41467-023-41164-2. 
  6. Vainorius, G. et al. (2023). Ascl1 and Ngn2 convert mouse embryonic stem cells to neurons via functionally distinct paths. Nat Commun. 14(1):5341. doi: 10.1038/s41467-023-40803-y. 
  7. Sekiguchi, Y. et al. (2023). Engineering Critical Residues of SOX9 Discovers a Variant with Potent Capacity to Induce Chondrocytes. Stem Cells. doi: 10.1093/stmcls/sxad066.
  8. Pavlakis, E. et al. (2023). Mutant p53-ENTPD5 control of the calnexin/calreticulin cycle: a druggable target for inhibiting integrin-α5-driven metastasis. J Exp Clin Cancer Res. 42(1):203. doi: 10.1186/s13046-023-02785-z. 
  9. Berková, L. et al. (2023). Terminal differentiation of villus tip enterocytes is governed by distinct Tgfβ superfamily members. EMBO Rep. 24(9):e56454. doi: 10.15252/embr.202256454.
  10. Meyer, L.M. et al. (2023). Deciphering the mitophagy receptor network identifies a crucial role for OPTN (optineurin) in acute myeloid leukemia. Autophagy. doi: 10.1080/15548627.2023.2230839.
  11. Torcal Garcia, G. et al. (2023). Carm1-arginine methylation of the transcription factor C/EBPα regulates transdifferentiation velocity. Elife. 12:e83951. doi: 10.7554/eLife.83951.
  12. Zhang, Y. et al. (2023). Net39 protects muscle nuclei from mechanical stress during the pathogenesis of Emery-Dreifuss muscular dystrophy. J Clin Invest. 133(13):e163333. doi: 10.1172/JCI163333.
  13. Pachmayr, L.O. et al. (2023). Unbiased chemokine receptor screening reveals similar efficacy of lymph node- and tumor-targeted T cell immunotherapy. Cancer Immunol Immunother. doi: 10.1007/s00262-023-03472-w.
  14. Sato, S. et al. (2023). The circadian clock CRY1 regulates pluripotent stem cell identity and somatic cell reprogramming. Cell Rep. 42(6):112590. doi: 10.1016/j.celrep.2023.112590. 
  15. Salemme, V. et al. (2023). p140Cap inhibits β-Catenin in the breast cancer stem cell compartment instructing a protective anti-tumor immune response. Nat Commun. 14(1):2350. doi: 10.1038/s41467-023-37824-y.
  16. Tabata, K. et al. (2023). Monitoring and assessment of lysosomal membrane damage in cultured cells using the high-content imager. STAR Protoc. 4(2):102236. doi: 10.1016/j.xpro.2023.102236.
  17. Jin, J. et al. (2023). CISH impairs lysosomal function in activated T cells resulting in mitochondrial DNA release and inflammaging. Nat Aging. 3(5):600-616. doi: 10.1038/s43587-023-00399-w.
  18. Bhatia, V. et al. (2023). Targeting advanced prostate cancer with STEAP1 chimeric antigen receptor T cell and tumor-localized IL-12 immunotherapy. Nat Commun. 14(1):2041. doi: 10.1038/s41467-023-37874-2.
  19. Read, K.A. et al. (2023). Aiolos represses CD4+ T cell cytotoxic programming via reciprocal regulation of TFH transcription factors and IL-2 sensitivity. Nat Commun. 14(1):1652. doi: 10.1038/s41467-023-37420-0.
  20. Pham, D. et al. (2023). Batf stabilizes Th17 cell development via impaired Stat5 recruitment of Ets1-Runx1 complexes. EMBO J. 42(8):e109803. doi: 10.15252/embj.2021109803.
  21. Hahn, A.M. et al. (2023). A monoclonal Trd chain supports the development of the complete set of functional γδ T cell lineages. Cell Rep. 42(3):112253. doi: 10.1016/j.celrep.2023.112253.
  22. Liu, Q. et al. (2023). Tcf21 marks visceral adipose mesenchymal progenitors and functions as a rate-limiting factor during visceral adipose tissue development. Cell Rep. 42(3):112166. doi: 10.1016/j.celrep.2023.112166.
  23. Diril, M. et al. (2023). Genetic dissection of the Mastl-Arpp19/Ensa-PP2A-B55δ pathway in mammalian cells. TJB. 48(2):190-202. doi: 10.1515/tjb-2022-0191.
  24. Tang, J. et al. (2023). Runx3-overexpression cooperates with ex vivo AKT inhibition to generate receptor-engineered T cells with better persistence, tumor-residency, and antitumor ability. J Immunother Cancer. 11(2):e006119. doi: 10.1136/jitc-2022-006119.
  25. Oh S. et al. (2023).  Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat Biotechnol. doi: 10.1038/s41587-022-01637-z. 
  26. Briukhovetska, D. et al. (2023). T cell-derived interleukin-22 drives the expression of CD155 by cancer cells to suppress NK cell function and promote metastasis. Immunity. 56(1):143-161.e11. doi: 10.1016/j.immuni.2022.12.010.
  27. Saltukoglu, D. et al. (2023). Plasma membrane topography governs the 3D dynamic localization of IgM B cell antigen receptor clusters. EMBO J. 42(4):e112030. doi: 10.15252/embj.2022112030.
  28. Caravia, X.M. et al. (2022). Loss of function of the nuclear envelope protein LEMD2 causes DNA damage-dependent cardiomyopathy. J Clin Invest. 132(22):e158897. doi: 10.1172/JCI158897.
  29. Zenke, S. et al. (2022). Differential trafficking of ligands trogocytosed via CD28 versus CTLA4 promotes collective cellular control of co-stimulation. Nat Commun. 13(1):6459. doi: 10.1038/s41467-022-34156-1.
  30. Jain, P. et al. (2022). Discovery and functional characterization of the oncogenicity and targetability of a novel NOTCH1-ROS1 gene fusion in pediatric angiosarcoma. Cold Spring Harb Mol Case Stud. 8(6):a006222. doi: 10.1101/mcs.a006222.