Nuclear/Cytosolic Fractionation Kits

Nuclear/Cytosolic Fractionation Kits
  • Simple and fast tool to isolate nuclear extract from the cytoplasmic fraction of mammalian cells
  • Extraction in less than 2 hours
  • Each prep can accommodate up to 5 x 106cells
Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Nuclear/Cytosolic Fractionation Kit
Catalog Number
AKR-171
Size
20 preps
Detection
N/A
Manual/Data Sheet Download
SDS Download
Price
$210.00
Nuclear/Cytosolic Fractionation Kit
Catalog Number
AKR-172
Size
100 preps
Detection
N/A
Manual/Data Sheet Download
SDS Download
Price
$575.00
Product Details

Cell Biolabs’ Nuclear/Cytosolic Fractionation Kit provides a simple and fast tool to isolate nuclear extract from the cytoplasmic fraction of mammalian cells.  The procedure has been optimized to provide extraction, with high protein recovery and low cross-contamination, in less than 2 hours.  The extracted protein fractions are functional and suitable for downstream assays such as DNA footprinting, RNA splicing, gel shift assays (EMSA), reporter assays, enzyme activity assays, and Western blotting.

HEK293 Cell Fractionation. Cytosolic and nuclear protein extracts were isolated from Human Embryonic Kidney 293 cells according to the Assay Protocol. Whole cell (W), cytosol (C), and nuclear (N) fractions were immunoblotted with Anti-α-Tubulin (cytosol-specific protein,left) or Anti-Lamin A/C (nuclear-specific protein, right) at 1 µg/mL.

HEK293 Trypan Blue Staining. Human Embryonic Kidney 293 cells were stained with Trypan Blue at various steps during the fractionation protocol, demonstrating complete lysis and high nuclei recovery.

Recent Product Citations
  1. Takagi-Kimura, M. et al. (2022). BAP1 depletion in human B-lymphoblast cells affects the production of innate immune cytokines and chemokines. Genes Cells. 27(12):731-740. doi: 10.1111/gtc.12988.
  2. Mohri, S. et al. (2022). Integration of bioassay and non-target metabolite analysis of tomato reveals that β-carotene and lycopene activate the adiponectin signaling pathway, including AMPK phosphorylation. PLoS One. 17(7):e0267248. doi: 10.1371/journal.pone.0267248.
  3. Li, Y. et al. (2022). LncRNA SNHG5 promotes the proliferation and cancer stem cell-like properties of HCC by regulating UPF1 and Wnt-signaling pathway. Cancer Gene Ther. doi: 10.1038/s41417-022-00456-3.
  4. Mikawa, M. et al. (2022). Herpud1 suppress angiotensin II induced hypertrophy in cardiomyocytes. Biochem Biophys Rep. 30:101248. doi: 10.1016/j.bbrep.2022.101248.
  5. Nakazawa, N. et al. (2022). Cytoplasmic localization of connexin 26 suppresses transition of β-catenin into the nucleus in intestinal- and mix-type gastric cancer. Ann Gastroenterol Surg. doi: 10.1002/ags3.12552.
  6. Xu, J. et al. (2022). The circular RNA circ_0030018/miR-136/migration and invasion enhancer 1 (MIEN1) axis promotes the progression of polycystic ovary syndrome. Bioengineered. 13(3):5999-6011. doi: 10.1080/21655979.2022.2041796.
  7. Fu, Y. et al. (2022). Long non‑coding RNA HCG22 inhibits the proliferation, invasion and migration of oral squamous cell carcinoma cells by downregulating miR‑425‑5p expression. Exp Ther Med. 23:246. doi: 10.3892/etm.2022.11171.
  8. Tripathi, B.K. et al. (2021). Inhibition of cytoplasmic EZH2 induces antitumor activity through stabilization of the DLC1 tumor suppressor protein. Nat Commun. 12(1):6941. doi: 10.1038/s41467-021-26993-3.
  9. Huang, D. & Li, C. (2021). circ-ACACA promotes proliferation, invasion, migration and glycolysis of cervical cancer cells by targeting the miR-582-5p/ERO1A signaling axis. Oncol Lett. 22(5):795. doi: 10.3892/ol.2021.13056.
  10. Takeuchi, K. et al. (2021). Colchicine protects against cartilage degeneration by inhibiting MMP13 expression via PLC-γ1 phosphorylation. Osteoarthritis Cartilage. doi: 10.1016/j.joca.2021.08.001.
  11. Xu, Z. et al. (2021). Lnc-HZ01 with m6A RNA methylation inhibits human trophoblast cell proliferation and induces miscarriage by up-regulating BPDE-activated lnc-HZ01/MXD1 positive feedback loop. Sci Total Environ. doi: 10.1016/j.scitotenv.2021.145950.
  12. Shu, J. et al. (2021). Fertility-enhancing potential of ethanol extract of Cuscuta chinensis seeds in a rat model of unilateral cryptorchidism. Trop J Pharm Res. 20(5):995-1002. doi: 10.4314/tjpr.v20i5.16.
  13. Geng, C. & Ou, S. (2021). Higenamine Induces Glioma Cell Death by Modulating Nuclear Factor-κB Nuclear Translocation, Phosphoinositide-3-Kinase/Protein Kinase B Signaling and Caspase Cascade. Curr Top Nutraceutical Res. 19(3):317-325. doi: 10.37290/ctnr2641–452X.19:317–325.
  14. Li, J. et al. (2021). LncRNA NOP14-AS1 Promotes Tongue Squamous Cell Carcinoma Progression by Targeting MicroRNA-665/HMGB3 Axis. Cancer Manag Res. 13:2821-2834. doi: 10.2147/CMAR.S293322.
  15. Bhatt, A.B. et al. (2021). Diverse and converging roles of ERK1/2 and ERK5 pathways on mesenchymal to epithelial transition in breast cancer. Transl Oncol. 14(6):101046. doi: 10.1016/j.tranon.2021.101046.
  16. Ushimaru, S. et al. (2020). Roles of Layilin in Regulation of Low-Density Lipoprotein Receptor in Malignant Glioma Cells. J. St. Marianna Univ. 11:53-59.
  17. Kumar, A. et al (2020). Actin R256 Mono-methylation Is a Conserved Post-translational Modification Involved in Transcription. Cell Rep. 32(13):108172. doi: 10.1016/j.celrep.2020.108172.
  18. Hwang, S.G. et al. (2020). Cold atmospheric plasma prevents wrinkle formation via an anti-aging process. Plasma Med. doi: 10.1615/PlasmaMed.2020034810.
  19. Sadek, J. et al. (2020). Modulation of virus-induced NF-κB signaling by NEMO coiled coil mimics. Nat Commun. 11(1):1786. doi: 10.1038/s41467-020-15576-3.
  20. Xiao,G. et al. (2019). Bacoside A attenuates nephrotoxicity and acute kidney injury in male albino rats induced by cisplatin. Int. J. Pharmacol. 15:257-264. doi: 10.3923/ijp.2019.257.264.
  21. Zeng, X. et al. (2019). Adenovirus early region 3 RIDa protein limits NFκB signaling through stress-activated EGF receptors. PLoS Pathog. 15(8):e1008017. doi: 10.1371/journal.ppat.1008017.
  22. Okuno, Y. et al. (2019). Bioactivation Mechanisms of N-hydroxyaristolactams: Nitroreduction Metabolites of Aristolochic Acids. Environ Mol Mutagen. doi: 10.1002/em.22321.
  23. Hao, Y. et al. (2019). Cardioprotective Efficacy of Naringenin Against Isoproterenol Induced Chronic Heart Failure in a Rat Model. International Journal of Pharmacology. 15: 759-765. doi: 10.3923/ijp.2019.759.765.
  24. Kaji, T. et al. (2019). Layilin enhances the invasive ability of malignant glioma cells via SNAI1 signaling. Brain Res. pii: S0006-8993(19)30289-6. doi: 10.1016/j.brainres.2019.05.034.
  25. Lin, X. et al. (2019). Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One. 14(5):e0216711. doi: 10.1371/journal.pone.0216711.
  26. Sun, S. et al. (2019). Icariin Attenuates High Glucose-Induced Apoptosis, Oxidative Stress, and Inflammation in Human Umbilical Venous Endothelial Cells. Planta Med. 85(6):473-482. doi: 10.1055/a-0837-0975.
  27. Xiao, G. et al. (2019). Bacoside a Attenuates Nephrotoxicity and Acute Kidney Injury in Male Albino Rats Induced by Cisplatin. International Journal of Pharmacology. 15: 257-264. doi: 10.3923/ijp.2019.257.264.
  28. Hu, W. et al. (2019). Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-β1. J Cell Physiol. 234(2):1469-1476. doi: 10.1002/jcp.26959.
  29. Kim, G. et al. (2018). Combined delivery of curcumin and the heme oxygenase-1 gene using cholesterol-conjugated polyamidoamine for anti-inflammatory therapy in acute lung injury. Phytomedicine. 56:165-174. doi: 10.1016/j.phymed.2018.09.240.
  30. Yu, L. et al. (2018). LncRNA cancer susceptibility candidate 15 accelerates the breast cancer cells progression via miR-153-3p/KLF5 positive feedback loop. Biochem Biophys Res Commun. 506(4):819-825. doi: 10.1016/j.bbrc.2018.10.131.