MDA Adduct Competitive ELISA

MDA Adduct Competitive ELISA
  • Detect as little as 6 pmol/mL of malondialdehyde
  • More specific for MDA than traditional TBARS assay

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ MDA Adduct Competitive ELISA Kit
Catalog Number
STA-832
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$755.00
OxiSelect™ MDA Adduct Competitive ELISA Kit
Catalog Number
STA-832-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$3,250.00
Product Details

MDA, or malondialdehyde, is a widely accepted marker for oxidative stress. Our OxiSelect™ MDA Competitive ELISA Kit provides a sensitive, specific method for detection of this lipid peroxidation by-product.

Important Note: MDA adducts are not stable long term. For best results test all samples immediately upon collection, or freeze them at -80ºC for up to one month. MDA may be degraded in samples that have been frozen for longer periods; in such cases more reliable results may be obtained from more stable markers of oxidative stress such as protein carbonyl, 8-OHdG or 4-HNE.

Recent Product Citations
  1. Jo, M.J. et al. (2023). Impaired NRF2 Inhibits Recovery from Ischemic Reperfusion Injury in the Aging Kidney. Antioxidants (Basel). 12(7):1440. doi: 10.3390/antiox12071440.
  2. Yamada, K. et al. (2023). Retinal ferroptosis as a critical mechanism for the induction of retinochoroiditis during ocular toxoplasmosis. Redox Biol. 67:102890. doi: 10.1016/j.redox.2023.102890.
  3. Elrayess, A.R. et al. (2023). Biochemical, Histological and Ultrastructural Studies on the Effect of Citric acid Supplementation on Aflatoxins-intoxicated Japanese Quail. J. Adv. Vet. 13(6):958-964.  
  4. Jang, K.B. et al. (2023). Efficacy of zinc glycinate reducing zinc oxide on intestinal health and growth of nursery pigs challenged with F18+ Escherichia coli. J Anim Sci. 101:skad035. doi: 10.1093/jas/skad035.
  5. Hadžić, Z. et al. (2023). Oxidative Stress and C-Reactive Protein as Salivary Biomarkers in Smokers with Periodontitis Stage III and IV After Non-Surgical Periodontal Therapy (A Pilot Study). Acta Med. Mediterr. 39:947-953. doi: 10.19193/0393-6384_2023_4_131.
  6. Mashiko, S. et al. (2023). Broad responses to chemical adducts shape the natural antibody repertoire in early infancy. Sci Adv. 9(19):eade8872. doi: 10.1126/sciadv.ade8872.
  7. Pérez-Peiró, M. et al. (2023). Nitrosative and Oxidative Stress, Reduced Antioxidant Capacity, and Fiber Type Switch in Iron-Deficient COPD Patients: Analysis of Muscle and Systemic Compartments. Nutrients. 15(6):1454. doi: 10.3390/nu15061454.
  8. Zhou, Z. et al. (2023). Fe-Fe Double-Atom Catalysts for Murine Coronavirus Disinfection: Nonradical Activation of Peroxides and Mechanisms of Virus Inactivation. Environ Sci Technol. 57(9):3804-3816. doi: 10.1021/acs.est.3c00163. 
  9. Somayajulu, M. et al. (2023). Airborne Exposure of the Cornea to PM10 Induces Oxidative Stress and Disrupts Nrf2 Mediated Anti-Oxidant Defenses. Int J Mol Sci. 24(4):3911. doi: 10.3390/ijms24043911.
  10. Yang, K.J. et al. (2023). Inhibition of Xanthine Oxidase Protects against Diabetic Kidney Disease through the Amelioration of Oxidative Stress via VEGF/VEGFR Axis and NOX-FoxO3a-eNOS Signaling Pathway. Int J Mol Sci. 24(4):3807. doi: 10.3390/ijms24043807.
  11. Baek, E.B. et al. (2022). Eriochloa villosa Alleviates Progression of Benign Prostatic Hyperplasia in vitro and in vivo. Res Rep Urol. 14:313-326. doi: 10.2147/RRU.S381713.
  12. Zhang, Q. et al. (2021). Micelle silymarin supplementation to sows' diet from day 109 of gestation to entire lactation period enhances reproductive performance, and affects serum hormones and metabolites. J Anim Sci. doi: 10.1093/jas/skab354.
  13. Qin, L. et al. (2021). Systemic Profiles of microRNAs, Redox Balance, and Inflammation in Lung Cancer Patients: Influence of COPD. Biomedicines. 9(10):1347. doi: 10.3390/biomedicines9101347.
  14. Malkov, A. et al. (2021). Aβ initiates brain hypometabolism, network dysfunction and behavioral abnormalities via NOX2-induced oxidative stress in mice. Commun Biol. 4(1):1054. doi: 10.1038/s42003-021-02551-x.
  15. Zhang, Y. et al. (2021). Neuroprotective effect of the somatostatin receptor 5 agonist L-817,818 on retinal ganglion cells in experimental glaucoma. Exp Eye Res. 204:108449. doi: 10.1016/j.exer.2021.108449.
  16. Satta, H. et al. (2021) Amelioration of hemodialysis-induced oxidative stress and fatigue with a hemodialysis system employing electrolyzed water containing molecular hydrogen. Ren Replace Ther. doi: 10.1186/s41100-021-00353-9.
  17. Li, Y. et al. (2021). Blue Light Induces Impaired Autophagy through Nucleotide-Binding Oligomerization Domain 2 Activation on the Mouse Ocular Surface. Int. J. Mol. Sci. 22(4):2015. doi: 10.3390/ijms22042015.
  18. Dong, S. et al. (2021). Leukemia inhibitory factor protects photoreceptor cone cells against oxidative damage through activating JAK/STAT3 signaling. Ann Transl Med. 9(2):152. doi: 10.21037/atm-20-8040.
  19. Clark, D. et al. (2021). A Randomized Double-Masked Phase 2a Trial to Evaluate Activity and Safety of Topical Ocular Reproxalap, a Novel RASP Inhibitor, in Dry Eye Disease. J Ocul Pharmacol Ther. doi: 10.1089/jop.2020.0087.
  20. Alfarisi, H.A.H. et al. (2020).  Hepatoprotective Effects of a Novel Trihoney against Nonalcoholic Fatty Liver Disease: A Comparative Study with Atorvastatin. The Scientific World Journal. doi: 10.1155/2020/4503253.
  21. Pacifici, F. et al. (2020). Prdx6 Plays a Main Role in the Crosstalk Between Aging and Metabolic Sarcopenia. Antioxidants (Basel). 9(4). pii: E329. doi: 10.3390/antiox9040329.
  22. Yang, J. et al. (2020). Sorting nexin 1 loss results in increased oxidative stress and hypertension. FASEB J. doi: 10.1096/fj.201902448R.
  23. Zhu, H. et al. (2020). Effect of Certain Quinones on Adenosine Triphosphate Level in Human Bladder Cancer Cells. Indian J Pharm Sci. 2020:82(1)spl issue2;1-6.
  24. Shimizu, Y. et al. (2020). Role of DJ‐1 in Modulating Glycative Stress in Heart Failure. J Am Heart Assoc. 9(4). doi: 10.1161/jaha.119.014691.
  25. El-Boshy, M. et al. (2020). Vitamin D3 and calcium cosupplementation alleviates cadmium hepatotoxicity in the rat: Enhanced antioxidative and anti-inflammatory actions by remodeling cellular calcium pathways. J Biochem Mol Toxicol. doi: 10.1002/jbt.22440.
  26. Ognik, K. et al. (2019). The effect of a rat diet without added Cu on redox status in tissues and epigenetic changes in the brain. Annals of Animal Science. doi: 10.2478/aoas-2019-0075.
  27. Katz, G.M. et al. (2019). Effects of genetic transfection on calcium cycling pathways mediated by double-stranded adeno-associated virus in post-infarction remodeling. J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2019.08.089.
  28. Chiang, S.S. et al. (2019). Role of Camellia brevistyla (Hayata) Coh. Stuart Seed Pomace Extract on Hypertension and Vascular Function in L-NAME-Treated Mice. J Food Sci. doi: 10.1111/1750-3841.14913.
  29. Du, Y. et al. (2019). Chlorinated effluent organic matter causes higher toxicity than chlorinated natural organic matter by inducing more intracellular reactive oxygen species. Sci Total Environ. 701:134881. doi: 10.1016/j.scitotenv.2019.134881.
  30. Xu, A. et al. (2019). Protective effect of lycopene on testicular toxicity induced by Benzo[a]pyrene intake in rats. Toxicology. doi: 10.1016/j.tox.2019.152301.