Lentivirus Rapid Quantitation Kit

Lentivirus Rapid Quantitation Kit
  • Ultra-fast 45-60 minute procedure
  • Measures the viral nucleic acid content of purified lentivirus or unpurified supernatant
  • Limit of detection: 10^10 viral particles/mL from 100 µL of lentiviral supernatant

 

Frequently Asked Questions about this product

General FAQs about Viral Gene Delivery

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

QuickTiter™ Lentivirus Quantitation Kit
Catalog Number
VPK-112
Size
20 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$640.00
Product Details

It is often useful to quickly quantify your lentivirus prior to purification. Our QuickTiter™ Lentivirus Quantitation Kit provides a quick method for measuring the viral nucleic acid content of your lentivirus. This assay may be performed either before or after purification of your virus.

Assay Principle  for the QuickTiter™ Lentivirus Quantitation Kit.

Recent Product Citations
  1. Sheta, R. et al. (2022). Combining NGN2 programming and dopaminergic patterning for a rapid and efficient generation of hiPSC-derived midbrain neurons. Sci Rep. 12(1):17176. doi: 10.1038/s41598-022-22158-4.
  2. MacDonald, W.W. et al. (2022). Effect of SPARC Suppression in Mice, Perfused Human Anterior Segments, and Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci. 63(6):8. doi: 10.1167/iovs.63.6.8.
  3. Nelson, J.K. et al. (2022). USP25 promotes pathological HIF-1-driven metabolic reprogramming and is a potential therapeutic target in pancreatic cancer. Nat Commun. 13(1):2070. doi: 10.1038/s41467-022-29684-9.
  4. Xu, M. et al. (2022). The E3 ubiquitin-protein ligase Trim31 alleviates non-alcoholic fatty liver disease by targeting Rhbdf2 in mouse hepatocytes. Nat Commun. 13(1):1052. doi: 10.1038/s41467-022-28641-w.
  5. Bonar, M.M. et al. (2020). Nanoscale flow cytometry reveals interpatient variability in HIV protease activity that correlates with viral infectivity and identifies drug-resistant viruses. Sci Rep. 10(1):18101. doi: 10.1038/s41598-020-75118-1.
  6. Li, J. et al. (2020). Nna1 gene deficiency triggers Purkinje neuron death by tubulin hyperglutamylation and ER dysfunction. JCI Insight. 5(19):136078. doi: 10.1172/jci.insight.136078.
  7. DaSilva-Arnold, S.C. et al. (2019). ZEB2, a master regulator of the epithelial-mesenchymal transition, mediates trophoblast differentiation. Mol Hum Reprod. 25(2):61-75. doi: 10.1093/molehr/gay053.
  8. Huang, L. et al. (2019). Time-restricted release of multiple neurotrophic factors promotes axonal regeneration and functional recovery after peripheral nerve injury. FASEB J. fj201802065RR. doi: 10.1096/fj.201802065RR.
  9. Huang, L. et al. (2018). Beta-catenin promotes macrophage-mediated acute inflammatory response after myocardial infarction. Immunol Cell Biol. 96(1):100-113. doi: 10.1111/imcb.1019.
  10. Ghosh, N. & Banerjee, E.R. (2017). A Review on Various Tissue Engineering Techniques to Induce Differentiation of Pluripotent Stem Cells. Medical Glory. 1(2):130-149.
  11. Pardee, K. et al. (2016). Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell. 165:1-12.
  12. Luo, H. et al. (2016). EphrinB1 and EphrinB2 regulate T cell chemotaxis and migration in experimental autoimmune encephalomyelitis and multiple sclerosis. Neurobiol Dis. 91:292-306.
  13. Georgiadis, M. M. et al. (2016). Small molecule activation of apurinic/apyrimidinic endonuclease 1 reduces DNA damage induced by cisplatin in cultured sensory neurons. DNA Repair.  doi:10.1016/j.dnarep.2016.03.009.
  14. Lambert, M. P. et al. (2015). Intramedullary megakaryocytes internalize released platelet factor 4 (PF4) and store it in alpha granules. J Thromb Haemost. doi:10.1111/jth.13069. 
  15. Kim, H. Suk. et al. (2015). APE1, the DNA base excision repair protein, regulates the removal of platinum adducts in sensory neuronal cultures by NER.Mutat Res-Fund Mol M. doi:10.1016/j.mrfmmm.2015.06.010.
  16. Yadavilli, S. et al. (2015). The emerging role of NG2 in pediatric diffuse intrinsic pontine gliomaOncotarget.  6:12141-12155.
  17. Ahmad, M. A. et al. (2015). Label-free capacitance-based identification of viruses. Sci Rep.5:9809.
  18. Tang, X. et al. (2015). The advantages of PD1 activating chimeric receptor (PD1-ACR) engineered lymphocytes for PDL1+ cancer therapy. Am J Transl Res. 7:460-473.
  19. Giraldo, D. M. et al. (2015).  Impact of in vitro costimulation with TLR2, TLR4 and TLR9 agonists and HIV-1 on antigen-presenting cell activation. Intervirology. 58:122-129.
  20. Shin, H. S. et al. (2015). Crosstalk among IL-23 and DNAX activating protein of 12 kDa-dependent pathways promotes osteoclastogenesis.J Immunol. 194:316-324.
  21. Al Ahmad, M. et al. (2014). Virus detection and quantification using electrical parameters. Sci Rep. 4:6831.
  22. Fan, X. et al. (2014). Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications. J Clin Invest. 124:4941-4952.
  23. Zhao, S. L. et al. (2014). Mesenchymal stem cells with overexpression of midkine enhance cell survival and attenuate cardiac dysfunction in a rat model of myocardial infarction. Stem Cell Res Ther. 5:37.
  24. Rossello, R.A. et al. (2013). Mammalian Genes Induce Partially Reprogrammed Pluripotent Stem Cells in Non-Mammalian Vertebrate and Invertebrate Species. eLife Sci. 2:e00036.
  25. Hasan, S. et al. (2012). Assessment of circadian rhythms in humans: comparison of real-time fibroblast reporter imaging with plasma melatonin. FASEB J. 26(6):2414-23. doi: 10.1096/fj.11-201699.
  26. Fan, X. et al. (2012). Transient, Inducible, Placenta-Specific Gene Expression in Mice. Endocrinology. 153: 5637-5644 (#VPK-112). 
  27. Veeraraghavalu, K. et al. (2010). Presenilin 1 Mutants Impair the Self-Renewal and Differentiation of Adult Murine Subventricular Zone-Neuronal Progenitors via Cell-Autonomous Mechanisms Involving Notch Signaling. J. Neurosci. 30:6903-6915.
  28. Niwano, K. et al. (2008). Lentiviral vector-mediated SERCA2 gene transfer protects against heart failure and left ventricular remodeling after myocardial infarction in rats. Mol. Ther. 16:1026-1032.