LDH Cytotoxicity Assay Kit

LDH Cytotoxicity Assay Kit
  • Can be used to detect cytotoxicity in eukaryotic cells
  • Cells can be plated and then treated with compounds or agents that affect cell viability
  • Colorimetric kit containing sufficient reagents for the evaluation of 960 assays in 96-well plates
Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ LDH Cytotoxicity Assay Kit
Catalog Number
CBA-241
Size
960 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$335.00
Product Details

Cell Biolabs’ CytoSelect™ LDH Cytotoxicity Assay Kit provides a colorimetric format for measuring and monitoring cell cytotoxicity.  The kit contains sufficient reagents for the evaluation of 960 assays in 96-well plates.  Cells can be plated and then treated with compounds or agents that affect cell viability.  Upon cell death, lactate dehydrogenase (LDH), a soluble enzyme found in the cytoplasm, is released into the growth media.  The growth media is then transferred to another plate and the released LDH is then detected with cytotoxicity reagent.  In the presence of lactate substrate (included in the LDH Cytotoxicity Reagent) LDH converts lactate to pyruvate and generates nicotinamide adenine dinucleotide (NADH).   The WST-1 molecule, also present in the LDH Cytotoxicity Reagent, is converted from WST-1 to the orange formazan form.  An increase in cell cytotoxicity is accompanied by increased LDH release and increased colorimetric signal.  The assay principles are basic and can be applied to most eukaryotic cell lines, including adherent and non-adherent cells and certain tissues, depending on LDH expression levels.

Recent Product Citations
  1. Dutta, B. et al. (2023). Plant-derived cell-penetrating microprotein α-astratide aM1 targets Akt signaling and alleviates insulin resistance. Cell Mol Life Sci. 80(10):293. doi: 10.1007/s00018-023-04937-y.
  2. Konaka, H. et al. (2023). Secretion of mitochondrial DNA via exosomes promotes inflammation in Behçet's syndrome. EMBO J. doi: 10.15252/embj.2022112573.
  3. Haba, D. et al. (2023). Investigation of ultrasound and low-frequency vibrations for glycometabolism promotion in 3T3-L1 adipocytes. Japanese Journal of Electrophysical Agents. doi: 10.57337/jjeapt.2023-001.
  4. Eller, K.A. et al. (2023). Photoactivated antibiotics to treat intracellular infection of bacteria. Nanoscale Adv. 5(7):1910-1918. doi: 10.1039/d2na00378c.
  5. Yu, Z. et al. (2022). UVA induces retinal photoreceptor cell death via receptor interacting protein 3 kinase mediated necroptosis. Cell Death Discov. 8(1):489. doi: 10.1038/s41420-022-01273-1.
  6. Faist, A. et al. (2022). Inhibition of p38 signaling curtails the SARS-CoV-2 induced inflammatory response but retains the IFN-dependent antiviral defense of the lung epithelial barrier. Antiviral Res. doi: 10.1016/j.antiviral.2022.105475.
  7. Tanas, A. et al. (2022). In Vitro and In Vivo Neuroprotective Effects of Sarcosine. Biomed Res Int. doi: 10.1155/2022/5467498.
  8. Pardo-Mora, D.P. et al. (2022). Microarray analysis of canine osteosarcoma cells exposed to Colombian propolis. Phytomedicine Plus. doi: 10.1016/j.phyplu.2022.100356.
  9. Tang, Y. et al. (2022). Cross-seeding between Aβ and SEVI indicates a pathogenic link and gender difference between alzheimer diseases and AIDS. Commun Biol. 5(1):417. doi: 10.1038/s42003-022-03343-7.
  10. Schreiber, A. et al. (2022). The MEK1/2-inhibitor ATR-002 efficiently blocks SARS-CoV-2 propagation and alleviates pro-inflammatory cytokine/chemokine responses. Cell Mol Life Sci. 79(1):65. doi: 10.1007/s00018-021-04085-1.
  11. Griffiths, A. et al. (2021). Nicotinamide N-methyltransferase upregulation via the mTORC1-ATF4 pathway activation contributes to palmitate-induced lipotoxicity in hepatocytes. Am J Physiol Cell Physiol. 321(3):C585-C595. doi: 10.1152/ajpcell.00195.2021.
  12. Hiu, J.J. & Yap, M.K.K. (2021). The effects of Naja sumatrana venom cytotoxin, sumaCTX on alteration of the secretome in MCF-7 breast cancer cells following membrane permeabilization. Int J Biol Macromol. 184:776-786. doi: 10.1016/j.ijbiomac.2021.06.145.
  13. Yu, Z. et al. (2021). Receptor interacting protein 3 kinase, not 1 kinase, through MLKL-mediated necroptosis is involved in UVA-induced corneal endothelium cell death. Cell Death Discov. 7(1):366. doi: 10.1038/s41420-021-00757-w.
  14. Haba, D. et al. (2021). Low-frequency vibration promotes AMPK-mediated glucose uptake in 3T3-L1 adipocytes. Heliyon. 7(9):e07897. doi: 10.1016/j.heliyon.2021.e07897.
  15. Torrisi, F. et al. (2021). Connexin 43 and Sonic Hedgehog Pathway Interplay in Glioblastoma Cell Proliferation and Migration. Biology (Basel). 10(8):767. doi: 10.3390/biology10080767.
  16. Dziwornu, G.A. et al. (2021). Antimalarial Benzimidazole Derivatives Incorporating Phenolic Mannich Base Side Chains Inhibit Microtubule and Hemozoin Formation: Structure-Activity Relationship and In Vivo Oral Efficacy Studies. J Med Chem. doi: 10.1021/acs.jmedchem.1c00354.
  17. Tang, Y. et al. (2021). Repurposing a Cardiovascular Disease Drug of Cloridarol as hIAPP Inhibitor. ACS Chem Neurosci. doi: 10.1021/acschemneuro.1c00091.
  18. Pardo-Mora, D.P. et al. (2021). Apoptosis-related gene expression induced by Colombian propolis samples in canine osteosarcoma cell line. Vet World. 14(4): 964-971. doi: 10.14202/vetworld.2021.964-971.
  19. Aydemir Sezer, U. et al. (2020). Zero Valent Iron Nanoparticles Containing Nanofiber Scaffolds for Nerve Tissue Engineering. J Tissue Eng Regen Med. doi: 10.1002/term.3137.
  20. Probst, A. et al. (2020). Expanding the activity profile of pyrido[1,2-a]benzimidazoles: Synthesis and evaluation of novel N1-1-phenylethanamine derivatives against Schistosoma mansoni. ACS Infect Dis. doi: 10.1021/acsinfecdis.0c00278.
  21. Shun, Q.T. et al. (2020). Naja sumatrana venom cytotoxin, sumaCTX exhibits concentration-dependent cytotoxicity via caspase-activated mitochondrial-mediated apoptosis without transitioning to necrosis. Toxin Rev. doi: 10.1080/15569543.2020.1799408.
  22. Casanova-Martí, À. et al. (2020). Long Term Exposure to a Grape Seed Proanthocyanidin Extract Enhances L-Cell Differentiation in Intestinal Organoids. Mol Nutr Food Res. doi: 10.1002/mnfr.202000303.
  23. Fabijańska, M. et al. (2020). Simple Trans-Platinum Complex Bearing 3-Aminoflavone Ligand Could Be a Useful Drug: Structure-Activity Relationship of Platinum Complex in Comparison with Cisplatin. Int. J. Mol. Sci. 21:2116. doi: 10.3390/ijms21062116.
  24. Pires, S. et al. (2020). Biological sex influences susceptibility to Acinetobacter baumannii pneumonia in mice. JCI Insight. pii: 132223. doi: 10.1172/jci.insight.132223.
  25. Mavangira, V. et al. (2020). 20-hydroxyeicosatetraenoic acid alters endothelial cell barrier integrity independent of oxidative stress and cell death. Prostaglandins Other Lipid Mediat. doi: 10.1016/j.prostaglandins.2020.106425.
  26. Pagoni, A. et al. (2019). Novel anti-Alzheimer phenol-lipoyl hybrids: Synthesis, physico-chemical characterization, and biological evaluation. Eur J Med Chem. doi: 10.1016/j.ejmech.2019.111880.
  27. Vicario, N. et al. (2019). Simultaneous Activation of Mu and Delta Opioid Receptors Reduces Allodynia and Astrocytic Connexin 43 in an Animal Model of Neuropathic Pain. Mol Neurobiol. doi: 10.1007/s12035-019-1607-1.
  28. Bahmani Jalali, H. et al. (2018). Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots. ACS Nano. 12(8):8104-8114. doi: 10.1021/acsnano.8b02976.
  29. van Krüchten, A. et al. (2018). Staphylococcus aureus triggers a shift from influenza virus-induced apoptosis to necrotic cell death. FASEB J. 32(5):2779-2793. doi: 10.1096/fj.201701006R.
  30. Geyikoglu, F. et al. (2017). Toxicological evaluation of submerged liquid culture from Phanerochaete chrysosporium mycelium on human blood cells: cytotoxicity, genotoxicity and oxidative damage. International Journal of Secondary Metabolite. 4(2017):319-329. doi: 10.21448/ijsm.373809.