Hydroxyproline Assay Kit

Hydroxyproline Assay Kit
  • Suitable for use with serum, plasma, lysates, and urine samples
  • Detection sensitivity limit of approximately 47.5 µM hydroxyproline
  • Hydroxyproline standard included
Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Hydroxyproline Assay Kit
Catalog Number
STA-675
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$465.00
Product Details

The amino acid hydroxyproline is synthesized through the post-translational modification of proline by prolyl hydroxylase. Hydroxyproline is found almost exclusively in collagen and measured hydroxyproline levels correlate to the levels of collagen present in the sample, which can indicate diseases involving collagen breakdown.

Our Hydroxyproline Assay Kit is a quantitative colorimetric assay for measuring the hydroxyproline concentration in protein samples.  Hydroxyproline in acid hydrolyzed samples is converted to pyrrole through a reaction with Chlormine T, which then reacts with Ehrlich’s Reagent to form a chromophore that is detected at 540-560nm. Hydroxyproline levels in samples are calculated based on a hydroxyproline standard curve.

Recent Product Citations
  1. Dewidar, B. et al. (2023). Alterations of hepatic energy metabolism in murine models of obesity, diabetes and fatty liver diseases. EBioMedicine. doi: 10.1016/j.ebiom.2023.104714.
  2. Ha, K.B. et al. (2023). Beneficial Effects of a Curcumin Derivative and Transforming Growth Factor-β Receptor I Inhibitor Combination on Nonalcoholic Steatohepatitis. Diabetes Metab J. doi: 10.4093/dmj.2022.0110.
  3. Kundu, A. et al. (2023). Dendropanoxide Alleviates Thioacetamide-induced Hepatic Fibrosis via Inhibition of ROS Production and Inflammation in BALB/C Mice. Int J Biol Sci. 19(9):2630–2647. doi: 10.7150/ijbs.80743.
  4. Kuwabara, J.T. et al. (2022). Regulation of extracellular matrix composition by fibroblasts during perinatal cardiac maturation. J Mol Cell Cardiol. doi: 10.1016/j.yjmcc.2022.05.003.
  5. Soundararajan, R. et al. (2022). Lung fibrosis is induced in ADAR2 overexpressing mice via HuR-induced CTGF signaling. FASEB J. 36(2):e22143. doi: 10.1096/fj.202101511R.
  6. Xu, C. et al. (2022). Hepatic neddylation deficiency triggers fatal liver injury via inducing NF-κB-inducing kinase in mice. Nat Commun. 13(1):7782. doi: 10.1038/s41467-022-35525-6.
  7. Kundu, A. et al. (2022). Tenovin-1 Ameliorates Renal Fibrosis in High-Fat-Diet-Induced Diabetic Nephropathy via Antioxidant and Anti-Inflammatory Pathways. Antioxidants (Basel). 11(9):1812. doi: 10.3390/antiox11091812.
  8. Cassim Bawa, F.N. et al. (2022). Hepatic retinoic acid receptor alpha mediates all-trans retinoic acid's effect on diet-induced hepatosteatosis. Hepatol Commun. doi: 10.1002/hep4.2049.
  9. Son, J.H. et al. (2021). Establishment of optimal decellularization conditions using porcine placenta. J Anim Reprod Biotechnol. 36(4): 253-260. doi: 10.12750/JARB.36.4.253.
  10. Bhat, N. et al. (2021). Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice. J Clin Invest. doi: 10.1172/JCI153724.
  11. Kawami, M. et al. (2021). Evaluation on epithelial-mesenchymal state and microRNAs focusing on isolated alveolar epithelial cells from bleomycin injured rat lung. Toxicology. 461:152903. doi: 10.1016/j.tox.2021.152903.
  12. Mavropalias, G. et al. (2021). Changes in plasma hydroxyproline and plasma cell-free DNA concentrations after higher- versus lower-intensity eccentric cycling. Eur J Appl Physiol. doi: 10.1007/s00421-020-04593-1.
  13. Grondin, M.M. et al. (2021). Bi-Component T2 Mapping Correlates with Articular Cartilage Material Properties. J Biomech. doi: 10.1016/j.jbiomech.2020.110215.
  14. Jiang, Y. et al. (2021). Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics. 11(1):361-378. doi: 10.7150/thno.46360.
  15. Schappell, L.E. et al. (2020). A Microfluidic System to Measure Neonatal Lung Compliance Over Late Stage Development as a Functional Measure of Lung Tissue Mechanics. J Biomech Eng. doi: 10.1115/1.4047133.
  16. Xu, Y. et al. (2020). Hepatocyte-specific Expression of Human Carboxylesterase 2 Attenuates Non-alcoholic Steatohepatitis in Mice. Am J Physiol Gastrointest Liver Physiol. doi: 10.1152/ajpgi.00315.2020.
  17. Chiba, N. et al. (2020). Overexpression of hydroxyproline via EGLN/HIF1A is associated with distant metastasis in pancreatic cancer. Am J Cancer Res. 10(8):2570-2581. 
  18. Kundu, A. et al. (2020). EX-527 Prevents the Progression of High-Fat Diet-Induced Hepatic Steatosis and Fibrosis by Upregulating SIRT4 in Zucker Rats. Cells. 9(5). pii: E1101. doi: 10.3390/cells9051101.
  19. Xu, Y. et al. (2020). Hepatocyte‐Specific Expression of Human Carboxylesterase 1 Attenuates Diet‐Induced Steatohepatitis and Hyperlipidemia in Mice. Hepatol Commun. doi: 10.1002/hep4.1487.
  20. Sachan, R. et al. (2020). Dendropanax morbifera Protects against Renal Fibrosis in Streptozotocin-Induced Diabetic Rats. Antioxidants (Basel). 9(1). pii: E84. doi: 10.3390/antiox9010084.
  21. Arow, M. et al. (2020). Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc Diabetol. 19(1):7. doi: 10.1186/s12933-019-0980-4.
  22. Chang, H.H. et al. (2019). Intrarenal Transplantation of Hypoxic Preconditioned Mesenchymal Stem Cells Improves Glomerulonephritis through Anti-Oxidation, Anti-ER Stress, Anti-Inflammation, Anti-Apoptosis, and Anti-Autophagy. Antioxidants (Basel). 9(1). pii: E2. doi: 10.3390/antiox9010002.
  23. Henry, J.J.D. et al. (2019). Development of Injectable Amniotic Membrane Matrix for Postmyocardial Infarction Tissue Repair. Adv Healthc Mater. doi: 10.1002/adhm.201900544.
  24. Huang, M. et al. (2019). Systemic Sclerosis Dermal Fibroblasts Induce Cutaneous Fibrosis Through LOXL4: New Evidence from 3D Skin-like Tissues. Arthritis Rheumatol. doi: 10.1002/art.41163.
  25. Park, H.J. et al. (2019). Empagliflozin and Dulaglutide are Effective against Obesity-induced Airway Hyperresponsiveness and Fibrosis in A Murine Model. Sci Rep. 9(1):15601. doi: 10.1038/s41598-019-51648-1.
  26. Park, Y.H. et al. (2019). Insulin resistance mediates high-fat diet-induced pulmonary fibrosis and airway hyperresponsiveness through the TGF-β1 pathway. Exp Mol Med. 51(5):59. doi: 10.1038/s12276-019-0258-7.
  27. Pankova, D. et al. (2019). RASSF1A controls tissue stiffness and cancer stem-like cells in lung adenocarcinoma. EMBO J. pii: e100532. doi: 10.15252/embj.2018100532.
  28. Xu, Y. et al. (2019). Lipocalin‐2 Protects Against Diet‐Induced Nonalcoholic Fatty Liver Disease by Targeting Hepatocytes. Hepatology Communications. doi:10.1002/hep4.1341.
  29. MacDonald, J.A. et al. (2019). Extracellular matrix signaling activates differentiation of adult ovary-derived oogonial stem cells in a species-specific manner. Fertil Steril. 111(4):794-805. doi: 10.1016/j.fertnstert.2018.12.015.
  30. Lindsey, A.S. et al. (2019). Analysis of pulmonary vascular injury and repair during Pseudomonas aeruginosa infection-induced pneumonia and acute respiratory distress syndrome. Pulm Circ. 9(1):2045894019826941. doi: 10.1177/2045894019826941.