HNE Adduct Competitive ELISA

HNE Adduct Competitive ELISA
  • Measure HNE protein adduct levels in a variety of samples including cell and tissue lysates, serum, plasma, and purified proteins
  • HNE-BSA standard included

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ HNE Adduct Competitive ELISA Kit
Catalog Number
STA-838
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$755.00
OxiSelect™ HNE Adduct Competitive ELISA Kit
Catalog Number
STA-838-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$3,250.00
OxiSelect™ HNE Adduct Competitive ELISA Kit, Trial Size
Catalog Number
STA-838-T
Size
32 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$370.00
Product Details

4-hydroxynonenal (4-HNE or HNE) is a well known by-product of lipid peroxidation and is widely accepted as a stable marker for oxidative stress. Our OxiSelect™ HNE Adduct Competitive ELISA Kit measures the formation of HNE adducts to any protein residue using a competitive ELISA format.

Recent Product Citations
  1. Zalewska, A. et al. (2023). Mitochondrial Redox Balance of Fibroblasts Exposed to Ti-6Al-4V Microplates Subjected to Different Types of Anodizing. Int J Mol Sci. 24(16):12896. doi: 10.3390/ijms241612896.
  2. Li, X. et al. (2023). Structural basis of selective cannabinoid CB2 receptor activation. Nat Commun. 14(1):1447. doi: 10.1038/s41467-023-37112-9.
  3. Šķesters, A. et al. (2023). Selenium Status and Oxidative Stress in SARS-CoV-2 Patients. Medicina (Kaunas). 59(3):527. doi: 10.3390/medicina59030527.
  4. Dehondt, H. et al. (2023). Adipocyte-specific FXR-deficiency protects adipose tissue from oxidative stress and insulin resistance and improves glucose homeostasis. Mol Metab. 69:101686. doi: 10.1016/j.molmet.2023.101686.
  5. Nguyn, B.T. et al. (2023). Mountain-cultivated ginseng protects against cognitive impairments in aged GPx-1 knockout mice via activation of Nrf2/ChAT/ERK signaling pathway. J Ginseng Res. doi: 10.1016/j.jgr.2023.01.005.
  6. Ishikawa, G. et al. (2023). Comparison of the effects of peficitinib and tofacitinib in the adjuvant-induced arthritis rat model. Eur J Pharmacol. doi: 10.1016/j.ejphar.2023.175490.
  7. Ifediba, E.C. & Afonne, O.J. (2023). Thermally degraded palm kernel oil increased serum 4-hydroxynonenal protein adduct formation and hepatotoxic indications in Wistar rats: vitamin C intervention. Toxicol Adv. 5(1):1-8. doi:10.53388/TA202305001.
  8. Chen, I.C. et al. (2022). High-Fat Diet-Induced Obesity Alters Dendritic Cell Homeostasis by Enhancing Mitochondrial Fatty Acid Oxidation. J Immunol. doi: 10.4049/jimmunol.2100567.
  9. Sánchez-Carro, Y. et al. (2022). Importance of immunometabolic markers for the classification of patients with major depressive disorder using machine learning. Prog Neuropsychopharmacol Biol Psychiatry. doi: 10.1016/j.pnpbp.2022.110674.
  10. Rajesh, M. et al. (2022). Cannabinoid receptor 2 activation alleviates diabetes-induced cardiac dysfunction, inflammation, oxidative stress, and fibrosis. Geroscience. doi: 10.1007/s11357-022-00565-9.
  11. Nowak, B. et al. (2022). The Effect of Inhaled Air Particulate Matter SRM 1648a on the Development of Mild Collagen-Induced Arthritis in DBA/J Mice. Arch Immunol Ther Exp (Warsz). 70(1):17. doi: 10.1007/s00005-022-00654-9.
  12. Dettleff, P. et al. (2022). High-Temperature Stress Effect on the Red Cusk-Eel (Geypterus chilensis) Liver: Transcriptional Modulation and Oxidative Stress Damage. Biology. 11(7):990. doi: 10.3390/biology11070990.
  13. Maciejczyk, M. et al. (2022). α-Lipoic Acid Strengthens the Antioxidant Barrier and Reduces Oxidative, Nitrosative, and Glycative Damage, as well as Inhibits Inflammation and Apoptosis in the Hypothalamus but Not in the Cerebral Cortex of Insulin-Resistant Rats. Oxid Med Cell Longev. doi: 10.1155/2022/7450514.
  14. Maciejczyk, M. et al. (2022). Oxidation, Glycation, and Carbamylation of Salivary Biomolecules in Healthy Children, Adults, and the Elderly: Can Saliva Be Used in the Assessment of Aging? J Inflamm Res. 15:2051-2073. doi: 10.2147/JIR.S356029.
  15. Couchie, D. et al. (2022). Circadian rhythmicity of the thioredoxin system in cultured murine peritoneal macrophages. Biochimie. 198:76-85. doi: 10.1016/j.biochi.2022.03.006.
  16. Giri, T. et al. (2022). Labor induction with oxytocin in pregnant rats is not associated with oxidative stress in the fetal brain. Sci Rep. 12(1):3143. doi: 10.1038/s41598-022-07236-x.
  17. Skesters, A. et al. (2022). Selenium, selenoprotein P, and oxidative stress levels in SARS-CoV-2 patients during illness and recovery. Inflammopharmacology. doi: 10.1007/s10787-022-00925-z.
  18. Yang, L. et al. (2022). Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med. 3(2):119-136. doi: 10.1016/j.medj.2021.12.008.
  19. Morel, J.D. et al. (2022). The mouse metallomic landscape of aging and metabolism. Nat Commun. 13(1):607. doi: 10.1038/s41467-022-28060-x.
  20. Ketema, R.M. et al. (2022). Phthalates mixture on allergies and oxidative stress biomarkers among children: The Hokkaido study. Environ Int. 160:107083. doi: 10.1016/j.envint.2022.107083.
  21. Sommerfeld-Klatta, K. et al. (2022). Oxidative stress and biochemical indicators in blood of patients addicted to alcohol treated for acute ethylene glycol poisoning. Hum Exp Toxicol. 41:9603271211061502. doi: 10.1177/09603271211061502.
  22. Sánchez-Carro, Y. et al. (2021). Relationship between immunometabolic status and cognitive performance among major depression disorder patients. Psychoneuroendocrinology. 137:105631. doi: 10.1016/j.psyneuen.2021.105631.
  23. Xu, Q. et al. (2021). The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat Metab. doi: 10.1038/s42255-021-00491-8.
  24. Ormiston, K. et al. (2021). Effects of plant-based versus marine-based omega-3 fatty acids and sucrose on brain and liver fatty acids in a mouse model of chemotherapy. Nutr Neurosci. doi: 10.1080/1028415X.2021.1998296.
  25. Guillén, M.I. et al. (2021). Role of peroxiredoxin 6 in the chondroprotective effects of microvesicles from human adipose tissue-derived mesenchymal stem cells. J Orthop Translat. doi: 10.1016/j.jot.2021.08.003.
  26. Maciejczyk, M. et al. (2021). Salivary Redox Biomarkers in Insulin Resistance: Preclinical Studies in an Animal Model. Oxid Med Cell Longev. 2021:3734252. doi: 10.1155/2021/3734252.
  27. Dalenogare, D.P. et al. (2021). Periorbital Nociception in a Progressive Multiple Sclerosis Mouse Model Is Dependent on TRPA1 Channel Activation. Pharmaceuticals (Basel). 14(8):831. doi: 10.3390/ph14080831.
  28. Yousefzadeh, M.J. et al. (2021). An aged immune system drives senescence and ageing of solid organs. Nature. doi: 10.1038/s41586-021-03547-7.
  29. Zhu, X. et al. (2021). ADAM10 suppresses demyelination and reduces seizure susceptibility in cuprizone-induced demyelination model. Free Radic Biol Med. 171:26-41. doi: 10.1016/j.freeradbiomed.2021.05.001.
  30. Robinson, S.A. et al. (2021). Clothianidin alters leukocyte profiles and elevates measures of oxidative stress in tadpoles of the amphibian, Rana pipiens. Environ. Pollut. doi: 10.1016/j.envpol.2021.117149.