Comet Assay Kits, 3-Well

Comet Assay Kits, 3-Well
  • Useful screening tool for various types of DNA damage
  • Slides are specially treated for adhesion of low-melting agarose
  • Easy visualization by epifluorescence microscopy

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Comet Assay Kit (3-Well Slides)
Catalog Number
STA-351-5
Size
5 x 75 assays
Detection
Fluorescence Microscopy
Manual/Data Sheet Download
SDS Download
Price
$2,295.00
OxiSelect™ Comet Assay Kit (3-Well Slides)
Catalog Number
STA-351
Size
75 assays
Detection
Fluorescence Microscopy
Manual/Data Sheet Download
SDS Download
Price
$545.00
OxiSelect™ Comet Assay Kit (3-Well Slides)
Catalog Number
STA-350
Size
15 assays
Detection
Fluorescence Microscopy
Manual/Data Sheet Download
SDS Download
Price
$280.00
Product Details

Our OxiSelect™ 3-Well Comet Assay Kits provide a fast, convenient way to screen for general DNA damage, regardless of the source or nature of the damage. Kits include Comet Slides, reagents, and a fluorescent dye to visualize cells under an epifluorescence microscope.

Epifluorescence Microscopy Visualization of DNA Damage using the OxiSelect™ Comet Assay Kit. For detailed explanation please see "Calculation of Results" section in product manual.

Etoposide Treatment of Jurkat Cells. Jurkat cells untreated (left) and treated (right) with Etoposide before performing OxiSelect™ Comet Assay under alkaline electrophoresis conditions at 33V / 300 mA for 15 minutes.

Recent Product Citations
  1. Ni W. et al. (2023). An inducible long noncoding RNA, LncZFHX2, facilitates DNA repair to mediate osteoarthritis pathology. Redox Biol. doi: 10.1016/j.redox.2023.102858.
  2. Tang, H. et al. (2023). Astaxanthin attenuated cigarette smoke extract-induced apoptosis via decreasing oxidative DNA damage in airway epithelium. Biomed Pharmacother. 167:115471. doi: 10.1016/j.biopha.2023.115471.
  3. Wong, H.T. et al. (2023). Inhibition of ATM-directed antiviral responses by HIV-1 Vif. PLoS Pathog. 19(9):e1011634. doi: 10.1371/journal.ppat.1011634.
  4. Hwang, Y.J. et al. (2023). StemRegenin 1 Mitigates Radiation-Mediated Hematopoietic Injury by Modulating Radioresponse of Hematopoietic Stem/Progenitor Cells. Biomedicines. 11(3):824. doi: 10.3390/biomedicines11030824.
  5. Elbadawi, M. et al. (2023). The Novel Artemisinin Dimer Isoniazide ELI-XXIII-98-2 Induces c-MYC Inhibition, DNA Damage, and Autophagy in Leukemia Cells. Pharmaceutics. 15(4):1107. doi: 10.3390/pharmaceutics15041107.
  6. Miu, B.A. et al. (2023). MRC-5 Human Lung Fibroblasts Alleviate the Genotoxic Effect of Fe-N Co-Doped Titanium Dioxide Nanoparticles through an OGG1/2-Dependent Reparatory Mechanism. Int J Mol Sci. 24(7):6401. doi: 10.3390/ijms24076401.
  7. Brabson, JP. Et al. (2023). Oxidized mC modulates synthetic lethality to PARP inhibitors for the treatment of leukemia. Cell Rep. 42(1):112027. doi: 10.1016/j.celrep.2023.112027. 
  8. Calses, P.C. et al. (2023). TEAD Proteins Associate With DNA Repair Proteins to Facilitate Cellular Recovery From DNA Damage. Mol Cell Proteomics. 22(2):100496. doi: 10.1016/j.mcpro.2023.100496.
  9. Donne, R. et al. (2022). Replication stress triggered by nucleotide pool imbalance drives DNA damage and cGAS-STING pathway activation in NAFLD. Dev Cell. 57(14):1728-1741.e6. doi: 10.1016/j.devcel.2022.06.003.
  10. Zhu, Y. et al. (2022). Natural product preferentially targets redox and metabolic adaptations and aberrantly active STAT3 to inhibit breast tumor growth in vivo. Cell Death Dis. 13(12):1022. doi: 10.1038/s41419-022-05477-2.
  11. Yu, T. et al. (2022). Premature aging is associated with higher levels of 8-oxoguanine and increased DNA damage in the Polg mutator mouse. Aging Cell. 21(9):e13669. doi: 10.1111/acel.13669.
  12. Siemionow, M. et al. (2022). Long-Term Biodistribution and Safety of Human Dystrophin Expressing Chimeric Cell Therapy After Systemic-Intraosseous Administration to Duchenne Muscular Dystrophy Model. Arch Immunol Ther Exp (Warsz). 70(1):20. doi: 10.1007/s00005-022-00656-7.
  13. Hameed, F.H. & AL-Qadhi, H.I. (2022). Effect of Azithromycin on Sperm DNA of Male Rats. Int. J. Drug Deliv. Technol. 12(2):594-597. doi: 10.25258/ijddt.12.2.22.
  14. García-Cuellar, C.M. et al. (2022). Cetylpyridinium chloride inhibits human breast tumor cells growth in a no-selective way. J Appl Biomater Funct Mater. doi: 10.1177/22808000221092157.
  15. Xiong, H. et al. (2022). IFN-γ activates the tumor cell-intrinsic STING pathway through the induction of DNA damage and cytosolic dsDNA formation. Oncoimmunology. 11(1):2044103. doi: 10.1080/2162402X.2022.2044103.
  16. Albano, G.D. et al. (2022). Cadmium and Cadmium/BDE (47 or 209) Exposure Affect Mitochondrial Function, DNA Damage/Repair Mechanisms and Barrier Integrity in Airway Epithelial Cells. Atmosphere. 13(2):201. doi: 10.3390/atmos13020201.
  17. Fouché, T. et al. (2022). Ecotoxicological Effects of Aflatoxins on Earthworms under Different Temperature and Moisture Conditions. Toxins. 14(2):75. doi: 10.3390/toxins14020075.
  18. Zhang, L. et al. (2022). 53BP1 regulates heterochromatin through liquid phase separation. Nat Commun. 13(1):360. doi: 10.1038/s41467-022-28019-y.
  19. Chesnokova, V. et al. (2021). Local non-pituitary growth hormone is induced with aging and facilitates epithelial damage. Cell Rep. 37(11):110068. doi: 10.1016/j.celrep.2021.110068.
  20. Banerjee, D. et al. (2021). A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling. Nat Commun. 12(1):6207. doi: 10.1038/s41467-021-26240-9.
  21. Yanuaryska, R.D. et al. (2021). Viability and DNA damage of buccal mucosa cells in patients exposed to panoramic X-ray. Arch Orofac Sci. 16(Supp.1): 43–49. doi: 10.21315/aos2021.16.s1.8.
  22. Talluri, S. et al. (2021). Dysregulated APOBEC3G causes DNA damage and promotes genomic instability in multiple myeloma. Blood Cancer J. 11(10):166. doi: 10.1038/s41408-021-00554-9.
  23. Wang, T. et al. (2021). The effects of glucose-6-phosphate dehydrogenase deficiency on benzene-induced hematotoxicity in mice. Ecotoxicol Environ Saf. 226:112803. doi: 10.1016/j.ecoenv.2021.112803.
  24. Ciminera, A.K. et al. (2021). Elevated glucose increases genomic instability by inhibiting nucleotide excision repair. Life Sci Alliance. 4(10):e202101159. doi: 10.26508/lsa.202101159.
  25. Hudita, A. et al. (2021). Bioinspired silk fibroin nano-delivery systems protect against 5-FU induced gastrointestinal mucositis in a mouse model and display antitumor effects on HT-29 colorectal cancer cells in vitro. Nanotoxicology. doi: 10.1080/17435390.2021.1943032.
  26. Hung, S.Y. et al. (2021). Bavachinin Induces G2/M Cell Cycle Arrest and Apoptosis via the ATM/ATR Signaling Pathway in Human Small Cell Lung Cancer and Shows an Antitumor Effect in the Xenograft Model. J Agric Food Chem. doi: 10.1021/acs.jafc.1c01657.
  27. Cho, K. et al. Suppressor of cytokine signaling 2 is induced in Huntington's disease and involved in autophagy. Biochem Biophys Res Commun. 559:21-27. doi: 10.1016/j.bbrc.2021.04.089.
  28. Cho, D.H. et al. (2021). Far-infrared irradiation inhibits breast cancer cell proliferation independently of DNA damage through increased nuclear Ca2+/calmodulin binding modulated-activation of checkpoint kinase 2. J Photochem Photobiol B. doi: 10.1016/j.jphotobiol.2021.112188.
  29. Li, J. et al. (2021). Melatonin ameliorates cypermethrin-induced impairments by regulating oxidative stress, DNA damage and apoptosis in porcine Sertoli cells. Theriogenology. 167:67-76. doi: 10.1016/j.theriogenology.2021.03.011.
  30. Li, M.Z. et al. (2021). Discovery of MTR-106 as a highly potent G-quadruplex stabilizer for treating BRCA-deficient cancers. Invest New Drugs. doi: 10.1007/s10637-021-01096-4.