Cellular Senescence Staining Kit

Cellular Senescence Staining Kit
  • Stain cells for senescence-associated ß-galactosidase
  • Assay performed in a standard 35 mm culture dish

 

Frequently Asked Questions about this product

General FAQs about Cellular Senescence Assays

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

Cellular Senescence Detection Kit (SA-β-Gal Staining)
Catalog Number
CBA-230
Size
50 assays
Detection
Light Microscopy
Manual/Data Sheet Download
SDS Download
Price
$450.00
Cellular Senescence Detection Kit (SA-β-Gal Staining)
Catalog Number
CBA-230-5
Size
5 x 50 assays
Detection
Light Microscopy
Manual/Data Sheet Download
SDS Download
Price
$1,975.00
Product Details

Our Cellular Senescence Staining Kit provides an efficient method to visualize Senescence Associated (SA) ß-galactosidase. SA-ß-Gal catalyzes the hydrolysis of X-gal, which produces a blue color in senescent cells. Visualize results with a standard light microscope.

Recent Product Citations
  1. Ryu, S. et al. (2023). Impact of media compositions and culture systems on the immunophenotypes of patient-derived breast cancer cells. BMC Cancer. 23(1):831. doi: 10.1186/s12885-023-11185-7.
  2. Raber, J. et al. (2023). Behavioral and Cognitive Performance Following Exposure to Second-Hand Smoke (SHS) from Tobacco Products Associated with Oxidative-Stress-Induced DNA Damage and Repair and Disruption of the Gut Microbiome. Genes. 14(9):1702. doi: 10.3390/genes14091702.
  3. Warman, D.J. et al. (2023). Effects of Thyme (Thymus vulgaris L.) Essential Oil on Aging-Induced Brain Inflammation and Blood Telomere Attrition in Chronologically Aged C57BL/6J Mice. Antioxidants. 12(6):1178. doi: 10.3390/antiox12061178.
  4. Ji, M.L. et al. (2023). Dynamic chromatin accessibility tuning by the long noncoding RNA ELDR accelerates chondrocyte senescence and osteoarthritis. Am J Hum Genet. 110(4):606-624. doi: 10.1016/j.ajhg.2023.02.011.
  5. Huang, Y. et al. (2022). The impact of senescence on muscle wasting in chronic kidney disease. J Cachexia Sarcopenia Muscle. doi: 10.1002/jcsm.13112.
  6. Sanagawa, A. et al. (2022). Effect of Replicative Senescence on the Expression and Function of Transporters in Human Proximal Renal Tubular Epithelial Cells. Biol Pharm Bull. 45(11):1636-1643. doi: 10.1248/bpb.b22-00322.
  7. Okawa, R. et al. (2022). The effects of continuous exposure to low-dose chlorine dioxide gas on the characteristics of induced pluripotent stem cells. Regen Ther. 21:250-257. doi: 10.1016/j.reth.2022.07.014.
  8. Yamamoto, M. et al. (2022). Gemcitabine Cooperates with Everolimus to Inhibit the Growth of and Sensitize Malignant Meningioma Cells to Apoptosis Induced by Navitoclax, an Inhibitor of Anti-Apoptotic BCL-2 Family Proteins. Cancers (Basel). 14(7):1706. doi: 10.3390/cancers14071706.
  9. Madonna, R. et al. (2022). Sex-related differential susceptibility to ponatinib cardiotoxicity and differential modulation of the Notch1 signalling pathway in a murine model. J Cell Mol Med. doi: 10.1111/jcmm.17008.
  10. Das, J.K. et al. (2022). Elongation factor-2 kinase is a critical determinant of the fate and antitumor immunity of CD8+ T cells. Sci Adv. 8(5):eabl9783. doi: 10.1126/sciadv.abl9783.
  11. Wang, T. et al. (2021). Pulsed electromagnetic fields attenuate glucocorticoid-induced bone loss by targeting senescent LepR+ bone marrow mesenchymal stromal cells. Mater Sci Eng C Mater Biol Appl. doi: 10.1016/j.msec.2021.112635.
  12. Madonna, R. et al. (2021). Sodium-glucose cotransporter type 2 inhibitors prevent ponatinib-induced endothelial senescence and disfunction: A potential rescue strategy. Vascul Pharmacol. 142:106949. doi: 10.1016/j.vph.2021.106949.
  13. Wang, Q. et al. (2021). Celecoxib prevents tumor necrosis factor-α (TNF-α)-induced cellular senescence in human chondrocytes. Bioengineered. 12(2):12812-12820. doi: 10.1080/21655979.2021.2003661.
  14. Kim, N.Y. et al. (2021). Temozolomide abrogates the aggressiveness of urothelial carcinoma cells by enhancing senescence and depleting the side population. Oncol Lett. 22(6):845. doi: 10.3892/ol.2021.13106.
  15. Jenuit, M. et al (2021). Establishment and Cryopreservation of Fibroblast Cell Line from a Sumatran Rhinoceros (Dicerorhinus sumatrensis). J. Sustain. Sci. Manag. 16(4):85-98. doi: 10.46754/jssm.2021.06.008.
  16. Ho, D.H. et al. (2021). LRRK2 Kinase Inhibitor Rejuvenates Oxidative Stress-Induced Cellular Senescence in Neuronal Cells. Oxid Med Cell Longev. doi: 10.1155/2021/9969842.
  17. Cui, Z. et al. (2021). Effect of the traditional Chinese medicine Pinggan-Qianyang decoction on SIRT1-PTEN signaling in vascular aging in spontaneously hypertensive rats. Hypertens Res. doi: 10.1038/s41440-021-00682-6.
  18. Zhang, Y. et al. (2021). Salidroside Ameliorates Vascular Endothelial Cell Senescence through Downregulation of KLF4. J Biosci Med (Irvine). 9(2):21-32. doi: 10.4236/jbm.2021.92003.
  19. Kim, S.N. et al. (2020). Culturing at Low Cell Density Delays Cellular Senescence of Human Bone Marrow-Derived Mesenchymal Stem Cells in Long-Term Cultures. Int J Stem Cells. doi: 10.15283/ijsc20078.
  20. Baek, A.R. et al. (2020). Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Exp Mol Med. doi: 10.1038/s12276-020-00545-z.
  21. Hwang, S.G. et al. (2020). Cold atmospheric plasma prevents wrinkle formation via an anti-aging process. Plasma Med. doi: 10.1615/PlasmaMed.2020034810.
  22. Madonna, R. et al. (2020). Empagliflozin reduces the senescence of cardiac stromal cells and improves cardiac function in a murine model of diabetes. J Cell Mol Med. doi: 10.1111/jcmm.15699.
  23. Takei, Y. et al. (2020). Quality assessment tests for tumorigenicity of human iPS cell-derived cartilage. Sci Rep. 10(1):12794. doi: 10.1038/s41598-020-69641-4.
  24. Azmi, S.M. et al. (2020). Human umbilical cord-mesenchymal stem cells: a promising strategy for corneal epithelial regeneration. Regen Med. doi: 10.2217/rme-2019-0103.
  25. Yamazaki, H. et al. (2020). Ribosome binding protein GCN1 regulates the cell cycle and cell proliferation and is essential for the embryonic development of mice. PLoS Genet. 16(4):e1008693. doi: 10.1371/journal.pgen.1008693.
  26. Sugimoto, H. et al. (2020). Primary culture of mouse adipose and fibrous synovial fibroblasts under normoxic and hypoxic conditions. Biomed Res. 41(1):43-51. doi: 10.2220/biomedres.41.43.
  27. Sogawa, K. et al. (2020). Effects of continuous exposure to low concentration of ClO2 gas on the growth, viability, and maintenance of undifferentiated MSCs in long-term cultures. Regen Ther. 14:184–190. doi: 10.1016/j.reth.2019.12.007.
  28. Tan, J. et al. (2019). An R-loop-initiated CSB-RAD52-POLD3 pathway suppresses ROS-induced telomeric DNA breaks. Nucleic Acids Res. pii: gkz1114. doi: 10.1093/nar/gkz1114.
  29. O'Hara, S.P. et al. (2019). The transcription factor ETS1 promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor BCL2L1. J Biol Chem. pii: jbc.RA119.010176. doi: 10.1074/jbc.RA119.010176.
  30. Cilibrasi, C.  et al. (2019). A Ploidy Increase Promotes Sensitivity of Glioma Stem Cells to Aurora Kinases Inhibition. Journal of Oncology. doi: 10.1155/2019/9014045.