24-Well Cell Invasion Assays, Collagen I

24-Well Cell Invasion Assays, Collagen I
  • Fully quantify cell invasion with no manual cell counting
  • Plate inserts are precoated with Collagen I gel layer
  • Colorimetric or fluorometric quantitation

 

Frequently Asked Questions about this product

General FAQs about Cell Invasion Assays

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

CytoSelect™ 24-Well Cell Invasion Assay, Collagen I
Catalog Number
CBA-111-COL
Size
12 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$560.00
CytoSelect™ 24-Well Cell Invasion Assay, Collagen I
Catalog Number
CBA-110-COL
Size
12 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$560.00
Product Details

The ability of malignant tumor cells to invade normal surrounding tissue contributes in large part to the morbidity and mortality of cancers. Cell invasion requires several distinct cellular functions including adhesion, motility, detachment, and extracellular matrix proteolysis.

Our CytoSelect™ Cell Invasion Assays utilize precoated inserts to assay the invasive properties of tumor cells. Invasive cells can be quantified in 24-well plates on either a standard microplate reader or a fluorescence plate reader. Inserts are precoated on the top of the membrane with Collagen I.

CytoSelect™ Cell Invasion Assay Principle. Cell suspensions are placed on top of the gel matrix inside the upper chamber. After 24-48 hours, invasive cells move through the matrix and adhere to the bottom membrane of the insert. Non-invasive cells are then removed from the upper chamber, and invasive cells can be either stained and counted using a light microscope or quantified after extraction using a colorimetric or fluorometric plate reader.

Recent Product Citations
  1. Zhen, Q. et al. (2020). EPAS1 promotes peritoneal carcinomatosis of non-small-cell lung cancer by enhancing mesothelial-mesenchymal transition. Strahlenther Onkol. doi: 10.1007/s00066-020-01665-1 (#CBA-111-COL).
  2. Price, J.C. et al. (2020). Notch3 signaling promotes tumor cell adhesion and progression in a murine epithelial ovarian cancer model. PLoS One. 15(6):e0233962. doi: 10.1371/journal.pone.0233962 (#CBA-110-COL).
  3. Negro, G. et al. (2020). Molecular heterogeneity in breast carcinoma cells with increased invasive capacities. Radiol Oncol. 54(1):103‐118. doi: 10.2478/raon-2020-0007 (#CBA-111-COL).
  4. Gan, L. et al. (2019). Vitamin C Inhibits Triple-Negative Breast Cancer Metastasis by Affecting the Expression of YAP1 and Synaptopodin 2. Nutrients. 11(12). pii: E2997. doi: 10.3390/nu11122997 (#CBA-110-COL).
  5. Mallikarjuna, P. et al. (2019). Interactions between TGF-β type I receptor and hypoxia-inducible factor-α mediates a synergistic crosstalk leading to poor prognosis for patients with clear cell renal cell carcinoma. Cell Cycle. 18(17):2141-2156. doi: 10.1080/15384101.2019.1642069 (#CBA-110-COL).
  6. Aripaka, K. et al. (2019). TRAF6 function as a novel co-regulator of Wnt3a target genes in prostate cancer. EBioMedicine. pii: S2352-3964(19)30427-X. doi: 10.1016/j.ebiom.2019.06.046 (#CBA-110-COL).
  7. Orlandella, F.M. et al. (2019). miR-650 promotes motility of anaplastic thyroid cancer cells by targeting PPP2CA. Endocrine. doi: 10.1007/s12020-019-01910-3 (#CBA-110-COL).
  8. Zang, G. et al. (2019). PKCζ facilitates lymphatic metastatic spread of prostate cancer cells in a mice xenograft model. Oncogene. doi: 10.1038/s41388-019-0722-9 (#CBA-110-COL).
  9. Hübner, M. et al. (2018). Intronic miR-744 Inhibits Glioblastoma Migration by Functionally Antagonizing Its Host Gene MAP2K4. Cancers (Basel). 10(11). pii: E400. doi: 10.3390/cancers10110400 (#CBA-110-COL).
  10. Djuzenova, C. S. et al. (2015). Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status. Exp Cell Res.  330:346-357 (#CBA-110-COL).
  11. Mu, Y. et al. (2015). TGFβ-induced phosphorylation of Par6 promotes migration and invasion in prostate cancer cells. Br J Cancer.  doi: 10.1038/bjc.2015.71 (#CBA-110-COL).
  12. Djuzenova, C. S. et al. (2015). Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status. Exp Cell Res.  330:346-357 (#CBA-110-COL).
  13. Li, P. et al. (2015). A tight control of Rif1 by Oct4 and Smad3 is critical for mouse embryonic stem cell stability.Cell Death Dis. 6:e1588 (#CBA-110-COL).