AP Sites Quantitation Kit

AP Sites Quantitation Kit
  • Detect as few as 4-40 AP sites in 10^5 bp DNA 
  • Suitable for use with cells or tissues
  • Oxidized and reduced DNA standards included for absolute quantitation

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Oxidative DNA Damage Quantitation Kit (AP sites)
Catalog Number
STA-324
Size
50 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$725.00
Product Details

DNA damage can manifest in the formation of apurinic or apyrimidinic (AP or abasic) sites. Such spontaneous base loss in mammalian cells has been estimated at between 50,000 and 200,000 sites per day. Unrepaired abasic sites can inhibit transcription and may be mutagenic.

Our OxiSelect™ Oxidative DNA Damage Quantitation Kit provides a simple, user-friendly method for the quantitation DNA damage in the form of abasic sites. The assay uses an Aldehyde Reactive Probe (ARP) to specifically react with an aldehyde group on the open ring of the AP site. This allows the AP site to be labeled with Biotin, followed by detection with Streptavidin-Enzyme conjugate.

Standard Curve Generated Using the OxiSelect™ Oxidative DNA Damage Quantitation Kit (AP Sites).

Recent Product Citations
  1. Vlachogiannis, N.I. et al. (2023). Chronological Age and DNA Damage Accumulation in Blood Mononuclear Cells: A Linear Association in Healthy Humans after 50 Years of Age. Int J Mol Sci. 24(8):7148. doi: 10.3390/ijms24087148.
  2. Cheon, H. et al. (2023). Epigenetic modification of gene expression in cancer cells by terahertz demethylation. Sci Rep. 13(1):4930. doi: 10.1038/s41598-023-31828-w.
  3. Li, Y. et al. (2022). Myometrial oxidative stress drives MED12 mutations in leiomyoma. Cell Biosci. 12(1):111. doi: 10.1186/s13578-022-00852-0.
  4. Dettleff, P. et al. (2022). High-Temperature Stress Effect on the Red Cusk-Eel (Geypterus chilensis) Liver: Transcriptional Modulation and Oxidative Stress Damage. Biology. 11(7):990. doi: 10.3390/biology11070990.
  5. Sfikakis, P.P. et al. (2022). Microvasculopathy-Related Hemorrhagic Tissue Deposition of Iron May Contribute to Fibrosis in Systemic Sclerosis: Hypothesis-Generating Insights from the Literature and Preliminary Findings. Life (Basel). 12(3):430. doi: 10.3390/life12030430.
  6. Talluri, S. et al. (2021). Dysregulated APOBEC3G causes DNA damage and promotes genomic instability in multiple myeloma. Blood Cancer J. 11(10):166. doi: 10.1038/s41408-021-00554-9.
  7. Haider, N. et al. (2021). Signaling defects associated with insulin resistance in non-diabetic and diabetic individuals and modification by sex. J Clin Invest. doi: 10.1172/JCI151818.
  8. Ognik, K. et al. (2021). The immune status, oxidative and epigenetic changes in tissues of turkeys fed diets with different ratios of arginine and lysine. Sci Rep. 11(1):15975. doi: 10.1038/s41598-021-95529-y.
  9. Kim, J.H. et al. (2021). Nordihydroguaiaretic Acid as a Novel Substrate and Inhibitor of Catechol O-Methyltransferase Modulates 4-Hydroxyestradiol-Induced Cyto- and Genotoxicity in MCF-7 Cells. Molecules. 26(7):2060. doi: 10.3390/molecules26072060.
  10. Psyrri, A. et al. (2021). The DNA damage response network in the treatment of head and neck squamous cell carcinoma. ESMO Open. 6(2):100075. doi: 10.1016/j.esmoop.2021.100075.
  11. Dettleff, P. et al. (2020). Physiological and molecular responses to thermal stress in red cusk-eel (Genypterus chilensis) juveniles reveals atrophy and oxidative damage in skeletal muscle. J Therm Biol. doi: 10.1016/j.jtherbio.2020.102750.
  12. Ognik, K. et al. (2020). The effect of different dietary ratios of lysine and arginine in diets with high or low methionine levels on oxidative and epigenetic DNA damage, the gene expression of tight junction proteins and selected metabolic parameters in Clostridium perfringens-challenged turkeys. Vet Res. 51(1):50. doi: 10.1186/s13567-020-00776-y.
  13. Huo, X. et al. (2020). In Barrett's Epithelial Cells, Weakly Acidic Bile Salt Solutions Cause Oxidative DNA Damage with Response and Repair Mediated by p38. Am J Physiol Gastrointest Liver Physiol. doi: 10.1152/ajpgi.00329.2019.
  14. Sherwood, T.A. et al. (2019). Nonlethal Biomarkers of Oxidative Stress in Oiled Sediment Exposed Southern Flounder (Paralichthys lethostigma): Utility for Field-Base Monitoring Exposure and Potential Recovery. Environ Sci Technol. 53(24):14734-14743. doi: 10.1021/acs.est.9b05930.
  15. Rivas-Aravena, A. et al. (2019). Transcriptomic response of rainbow trout (Oncorhynchus mykiss) skeletal muscle to Flavobacterium psychrophilum. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics. 100596. doi:10.1016/j.cbd.2019.100596.
  16. Thai, S.F. et al. (2019). Differential Effects of Nano TiO₂ and CeO₂ on Normal Human Lung Epithelial Cells In Vitro. J Nanosci Nanotechnol. 19(11):6907-6923. doi: 10.1166/jnn.2019.16737.
  17. Norambuena, J. et al. (2019). Superoxide Dismutase and Pseudocatalase Increase Tolerance to Hg(II) in Thermus thermophilus HB27 by Maintaining the Reduced Bacillithiol Pool. MBio. 10(2). pii: e00183-19. doi: 10.1128/mBio.00183-19.
  18. Souliotis, V.L. et al. (2019). DNA damage accumulation, defective chromatin organization and deficient DNA repair capacity in patients with rheumatoid arthritis. Clin Immunol. 203:28-36. doi: 10.1016/j.clim.2019.03.009.
  19. Patchsung, M. et al. (2018). Alu siRNA to increase Alu element methylation and prevent DNA damage. Epigenomics. 10(2):175-185. doi: 10.2217/epi-2017-0096.
  20. Mishra, A. et al. (2018). Oxidative Stress-Mediated Overexpression of Uracil DNA Glycosylase in Leishmania donovani Confers Tolerance against Antileishmanial Drugs. Oxid Med Cell Longev. 2018:4074357. doi: 10.1155/2018/4074357.
  21. Thakur, S., et al. (2017). APE1 modulates cellular responses to organophosphate pesticide-induced oxidative damage in non-small cell lung carcinoma A549 cells. Molecular and Cellular Biochemistry.  441:Issue 1–2, pp 201–216.
  22. Mullick M, et al. (2017). d-Alanine 2, Leucine 5 Enkephaline (DADLE)-mediated DOR activation augments human hUCB-BFs viability subjected to oxidative stress via attenuation of the UPR. Stem Cell Res. 22:20-28. doi: 10.1016/j.scr.2017.05.009.
  23. Periyasamy, M. et al (2017). p53 controls expression of the DNA deaminase APOBEC3B to limit its potential mutagenic activity in cancer cells. Nucleic Acids Research. doi: 10.1093/nar/gkx721.
  24. Stasiolek, M. et al. (2017). The molecular effect of diagnostic absorbed doses from 131I on papillary thyroid cancer cells in vitro. Molecules. doi:10.3390/molecules22060993.
  25. Sapoznik, S. et al. (2016). Activation-induced cytidine deaminase links ovulation-induced inflammation and serous carcinogenesis. Neoplasia. 18:90-99.
  26. Garama, D. J. et al. (2015). A synthetic lethal interaction between glutathione synthesis and mitochondrial reactive oxygen species provides a tumor specific vulnerability dependent on STAT3Mol Cell Biol. doi:10.1128/MCB.00541-15.
  27. Guzmán-Guillén, R. et al. (2015). Beneficial effects of vitamin E supplementation against the oxidative stress on Cylindrospermopsin-exposed tilapia (Oreochromis niloticus). Toxicon.  104:34-42.
  28. Ferreira, E. et al. (2015). Glyceraldehyde-3-phosphate dehydrogenase is required for efficient repair of cytotoxic DNA lesions in Escherichia coli. Int J Biochem Cell Biol. 60:202-212.
  29. Zhao, K. et al. (2014).  S-sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair.  EMBO Rep. 15:792-800.
  30. Mohammad, M. K. et al. (2014).  Watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice modulates oxidative damage induced by low dose X-ray in mice. Biomed Res Int. 2014:512834.