AAV-DJ Packaging System

AAV-DJ Packaging System
  • pHelper plasmid contains required E2A, E4, and VA RNA adenoviral genes; eliminates the need for a helper adenovirus
  • Packaging System contains packaging plasmids and GFP control vector; co-transfect with separate AAV expression vector containing your gene of interest
  • AAV-DJ system provides a hybrid capsid created from 8 different AAV serotypes to provide substantially higher infectivity rates across a broad range of tissues

 

NOTE: AAV-DJ and AAV-DJ/8 Helper Free Systems are available for sale to academic, government and non-profit research laboratories. All other purchasers require a commercial license for all fields including research use. Please contact our Business Development department for license information.

 

Frequently Asked Questions about AAV Expression and Packaging

General FAQs about using AAV

General FAQs about Viral Gene Delivery

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

AAV-DJ Helper Free Packaging System
Catalog Number
VPK-400-DJ
Size
1 kit
Detection
N/A
Manual/Data Sheet Download
SDS Download
Map Download
Sequence Download
Price
$860.00
Product Details

The AAV Helper Free System produces recombinant AAV containing your gene of interest without the need to use a helper adenovirus. The adenoviral genes required for proper AAV packaging are provided in the pHelper plasmid (E2A, E4 and VA RNA) or in the 293 packaging cells (E1).

Viral Gene Delivery using the AAV Helper Free System.

Generation of AAV-DJ through Capsid DNA Family Shuffling.

Recent Product Citations
  1. Alsalloum, M. et al. (2023). A truncated receptor TRKB isoform (TRKB.T1) in mechanisms of genetically determined depressive-like behavior of mice. Biomedicines. 11(9):2573. doi: 10.3390/biomedicines11092573.
  2. Noritake, A. et al. (2023). Chemogenetic dissection of a prefrontal-hypothalamic circuit for socially subjective reward valuation in macaques. Nat Commun. 14(1):4372. doi: 10.1038/s41467-023-40143-x.
  3. Park, J. et al. (2023). Chemogenetic regulation of the TARP-lipid interaction mimics LTP and reversibly modifies behavior. Cell Rep. 42(8):112826. doi: 10.1016/j.celrep.2023.112826.
  4. Kuga, N. et al. (2023) Hippocampal sharp wave ripples underlie stress susceptibility in male mice. Nat Commun. 14(1):2105. doi: 10.1038/s41467-023-37736-x.
  5. Ilchibaeva, T. et al. (2023). Brain-Derived Neurotrophic Factor (BDNF) in Mechanisms of Autistic-like Behavior in BTBR Mice: Crosstalk with the Dopaminergic Brain System. Biomedicines. 11(5):1482. doi: 10.3390/biomedicines11051482.
  6. Inaba, Y. et al. (2023). The transcription factor ATF3 switches cell death from apoptosis to necroptosis in hepatic steatosis in male mice. Nat Commun. 14(1):167. doi: 10.1038/s41467-023-35804-w.
  7. Domingos, C. et al. (2023). Induced Remodelling of Astrocytes In Vitro and In Vivo by Manipulation of Astrocytic RhoA Activity. Cells. 12(2):331. doi: 10.3390/cells12020331.
  8. Kasahara, Y. et al. (2022). L-DOPA-induced Neurogenesis in the Hippocampus is Mediated through GPR143, a Distinct Mechanism of Dopamine. Stem Cells. doi: 10.1093/stmcls/sxab013.
  9. Yamahashi, Y. et al. (2022). Phosphoproteomic of the acetylcholine pathway enables discovery of the PKC-β-PIX-Rac1-PAK cascade as a stimulatory signal for aversive learning. Mol Psychiatry. doi: 10.1038/s41380-022-01643-2.
  10. Yuan, Q. & Gao, X. (2022). Multiplex base- and prime-editing with drive-and-process CRISPR arrays. Nat Commun. 13(1):2771. doi: 10.1038/s41467-022-30514-1.
  11. Bijata, M. et al. (2022). Activation of the 5-HT7 receptor and MMP-9 signaling module in the hippocampal CA1 region is necessary for the development of depressive-like behavior. Cell Rep. 38(11):110532. doi: 10.1016/j.celrep.2022.110532.
  12. Ma, L. et al. (2022). Nuclear factor of activated T cells 4 in the prefrontal cortex is required for prophylactic actions of (R)-ketamine. Transl Psychiatry. 12(1):27. doi: 10.1038/s41398-022-01803-6.
  13. Faruk, M.O. et al. (2021). Muscarinic signaling regulates voltage-gated potassium channel KCNQ2 phosphorylation in the nucleus accumbens via protein kinase C for aversive learning. J Neurochem. doi: 10.1111/jnc.15555.
  14. Chassefeyre, R. et al. (2021). Endosomal sorting drives the formation of axonal prion protein endoggresomes. Sci Adv. 7(52):eabg3693. doi: 10.1126/sciadv.abg3693.
  15. Lu, Y. et al. (2021). Strategies to package recombinant Adeno-Associated Virus expressing the N-terminal gasdermin domain for tumor treatment. Nat Commun. 12(1):7155. doi: 10.1038/s41467-021-27407-0.
  16. Zhao, F. et al. (2021). METTL3-dependent RNA m6A dysregulation contributes to neurodegeneration in Alzheimer's disease through aberrant cell cycle events. Mol Neurodegener. 16(1):70. doi: 10.1186/s13024-021-00484-x.
  17. Pensieri, P. et al. (2021). Photoreceptor cKO of OTX2 enhances OTX2 intercellular transfer in the retina and causes photophobia. eNeuro. doi: 10.1523/ENEURO.0229-21.2021.
  18. Chen, H.W. et al. (2021). Interleukin-30 Suppresses Not Only CD4+ T Cells but Also Regulatory T Cells in Murine Primary Biliary Cholangitis. Biomedicines. 9(8):1031. doi: 10.3390/biomedicines9081031.
  19. Stefanelli, G. et al. (2021). The histone chaperone Anp32e regulates memory formation, transcription, and dendritic morphology by regulating steady-state H2A.Z binding in neurons. Cell Rep. 36(7):109551. doi: 10.1016/j.celrep.2021.109551.
  20. Hu, J. et al. (2021). Co-opting regulation bypass repair as a gene correction strategy for monogenic diseases. Mol Ther. doi: 10.1016/j.ymthe.2021.04.017.
  21. Lin, Y.H. et al. (2020). Accumbal D2R-medium spiny neurons regulate aversive behaviors through PKA-Rap1 pathway. Neurochem Int. doi: 10.1016/j.neuint.2020.104935.
  22. Yesbolatova, A. et al. (2020). The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat Commun. 11(1):5701. doi: 10.1038/s41467-020-19532-z.
  23. Boys, I.N. et al. (2020). RTP4 Is a Potent IFN-Inducible Anti-flavivirus Effector Engaged in a Host-Virus Arms Race in Bats and Other Mammals. Cell Host Microbe. doi: 10.1016/j.chom.2020.09.014.
  24. Labus, J. et al. (2020). Amelioration of Tau pathology and memory deficits by targeting 5-HT7 receptor. Prog Neurobiol. doi: 10.1016/j.pneurobio.2020.101900.
  25. Isa, K. et al. (2020). Dissecting the tectal output channels for orienting and defense responses. eNeuro. doi: 10.1523/ENEURO.0271-20.2020.
  26. Lau, J.M.H. et al. (2020). The role of neuronal excitability, allocation to an engram and memory linking in the behavioral generation of a false memory in mice. Neurobiol Learn Mem.  doi: 10.1016/j.nlm.2020.107284.
  27. Tsang, A.H. et al. (2020). An adipokine feedback regulating diurnal food intake rhythms in mice. Elife. 9:e55388. doi: 10.7554/eLife.55388.
  28. Prieto-Garcia, C. et al. (2020). Maintaining protein stability of ∆Np63 via USP28 is required by squamous cancer cells. EMBO Mol Med. 12(4):e11101. doi: 10.15252/emmm.201911101.
  29. He, L. et al. (2020). Toll-like receptor 7 contributes to neuropathic pain by activating NF-κB in primary sensory neurons. Brain Behav Immun. doi: 10.1016/j.bbi.2020.03.019.
  30. Zhu, J. et al. (2020). Preparation of a Bacteriophage T4-based Prokaryotic-eukaryotic Hybrid Viral Vector for Delivery of Large Cargos of Genes and Proteins into Human Cells. Bio-protocol. 10(07): e3573. doi: 10.21769/BioProtoc.3573.