8-OHdG DNA Damage ELISA

8-OHdG DNA Damage ELISA
  • Detect as little as 100 pg/mL of 8-OHdG
  • Suitable for use with urine, serum, cells or tissues
  • 8-OHdG standard included for absolute quantitation

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation), Trial Size
Catalog Number
STA-320-T
Size
32 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$460.00
OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation)
Catalog Number
STA-320
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$920.00
OxiSelect™ Oxidative DNA Damage ELISA Kit (8-OHdG Quantitation)
Catalog Number
STA-320-5
Size
5 x 96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$3,950.00
Product Details

Among numerous types of oxidative DNA damage, 8-hydroxydeoxyguanosine (8-OHdG) is a ubiquitous marker of oxidative stress. 8-OHdG, one of the byproducts of oxidative DNA damage, is physiologically formed and enhanced by chemical carcinogens.

Our OxiSelect™ Oxidative DNA Damage ELISA Kit (8-hydroxydeoxyguanosine assay) provides a powerful method for rapid, sensitive quantitation of 8-OHdG in DNA samples.

8-OHdG ELISA Standard Curve

8-OHdG Levels in Human Urine.

Recent Product Citations
  1. Dewidar, B. et al. (2023). Alterations of hepatic energy metabolism in murine models of obesity, diabetes and fatty liver diseases. EBioMedicine. 94:104714. doi: 10.1016/j.ebiom.2023.104714.
  2. Linillos-Pradillo, B. et al. (2023). Low Dose of BPA Induces Liver Injury through Oxidative Stress, Inflammation and Apoptosis in Long-Evans Lactating Rats and Its Perinatal Effect on Female PND6 Offspring. Int J Mol Sci. 24(5):4585. doi: 10.3390/ijms24054585.
  3. Hadžić, Z. et al. (2023). Oxidative Stress and C-Reactive Protein as Salivary Biomarkers in Smokers with Periodontitis Stage III and IV After Non-Surgical Periodontal Therapy (A Pilot Study). Acta Med. Mediterr. 39:947-953. doi: 10.19193/0393-6384_2023_4_131.
  4. Ivanova, I. et al. (2023). UVA-induced metabolic changes in non-malignant skin cells and the potential role of pyruvate as antioxidant. Photochem Photobiol Sci. doi: 10.1007/s43630-023-00419-z.
  5. Peinado, V.I. et al. (2023). Atrophy signaling pathways in respiratory and limb muscles of guinea pigs exposed to chronic cigarette smoke: role of soluble guanylate cyclase stimulation. Am J Physiol Lung Cell Mol Physiol. 324(5):L677-L693. doi: 10.1152/ajplung.00258.2022.
  6. Xiao, L. et al. (2023). Autism-like behavior of murine offspring induced by prenatal exposure to progestin is associated with gastrointestinal dysfunction due to claudin-1 suppression. FEBS J. doi: 10.1111/febs.16761.
  7. Miao, N. et al. (2023). Oxidized mitochondrial DNA induces gasdermin D oligomerization in systemic lupus erythematosus. Nat Commun. 14(1):872. doi: 10.1038/s41467-023-36522-z. 
  8. Rodriguez-Pérez, M.D. et al. (2023). The Effect of the Extra Virgin Olive Oil Minor Phenolic Compound 3',4'-Dihydroxyphenylglycol in Experimental Diabetic Kidney Disease. Nutrients. 15(2):377. doi: 10.3390/nu15020377.
  9. Chhunchha, B. et al. (2023). Hydralazine Revives Cellular and Ocular Lens Health-Span by Ameliorating the Aging and Oxidative-Dependent Loss of the Nrf2-Activated Cellular Stress Response. Antioxidants (Basel). 12(1):140. doi: 10.3390/antiox12010140.
  10. Ko, E.J. et al. (2022). Effect of dual inhibition of DPP4 and SGLT2 on tacrolimus-induced diabetes mellitus and nephrotoxicity in a rat model. Am J Transplant. doi: 10.1111/ajt.17035.
  11. Hu, B. et al. (2022). Repurposing Ivermectin to augment chemotherapy's efficacy in osteosarcoma. Hum Exp Toxicol. doi: 10.1177/09603271221143693.
  12. Park, C. et al. (2022). Phloroglucinol Attenuates DNA Damage and Apoptosis Induced by Oxidative Stress in Human Retinal Pigment Epithelium ARPE-19 Cells by Blocking the Production of Mitochondrial ROS. Antioxidants (Basel). 11(12):2353. doi: 10.3390/antiox11122353.
  13. Wang, Y. et al. (2022). Protective effect of hydroxysafflor yellow A on renal ischemia‑reperfusion injury by targeting the Akt‑Nrf2 axis in mice. Exp Ther Med. doi: 10.3892/etm.2022.11677.
  14. Wang, B. et al. (2022). Let-7e-5p, a promising novel biomarker for benzene toxicity, is involved in benzene-induced hematopoietic toxicity through targeting caspase-3 and p21. Ecotoxicol Environ Saf. doi: 10.1016/j.ecoenv.2022.114142.
  15. Ibrahim, M.A. et al. (2022). Bone-Marrow-Derived Mesenchymal Stem Cells, Their Conditioned Media, and Olive Leaf Extract Protect against Cisplatin-Induced Toxicity by Alleviating Oxidative Stress, Inflammation, and Apoptosis in Rats. Toxics. 10(9):526. doi: 10.3390/toxics10090526.
  16. Wang, H. et al. (2022). Biphasic effects of statins on neuron cell functions under oxygen-glucose deprivation and normal culturing conditions via different mechanisms. Pharmacol Res Perspect. 10(5):e01001. doi: 10.1002/prp2.1001.
  17. Ohira, H. et al. (2022). Suppression of colonic oxidative stress caused by chronic ethanol administration and attenuation of ethanol-induced colitis and gut leakiness by oral administration of sesaminol in mice. Food Funct. doi: 10.1039/d1fo04120g.
  18. Fujita, N. et al. (2022). Association of oxidative stress with erectile dysfunction in community-dwelling men and men on dialysis. Aging Male. 25(1):193-201. doi: 10.1080/13685538.2022.2103113.
  19. Del Mar Rivas-Chacón, L. et al. (2022). Preventive Effect of Cocoa Flavonoids via Suppression of Oxidative Stress-Induced Apoptosis in Auditory Senescent Cells. Antioxidants (Basel). 11(8):1450. doi: 10.3390/antiox11081450.
  20. Konieczka, P. et al. (2022). Increased arginine, lysine, and methionine levels can improve the performance, gut integrity and immune status of turkeys but the effect is interactive and depends on challenge conditions. Vet Res. 53(1):59. doi: 10.1186/s13567-022-01080-7.
  21. Muhammed, S. et al. (2022). The Effect of Zingiber, Alpinia Officinarum with Periodontal Therapy on Clinical Outcome and Oxidative Stress. J. Hunan Univ. Nat. Sci. 49(6):32-43. doi: 10.55463/issn.1674-2974.49.6.4.
  22. Dworzański, W. et al. (2022). Oxidative, epigenetic changes and fermentation processes in the intestine of rats fed high-fat diets supplemented with various chromium forms. Sci Rep. 12(1):9817. doi: 10.1038/s41598-022-13328-5.
  23. Ghamry, H.I. et al. (2022). Ginseng® Alleviates Malathion-Induced Hepatorenal Injury through Modulation of the Biochemical, Antioxidant, Anti-Apoptotic, and Anti-Inflammatory Markers in Male Rats. Life (Basel). 12(5):771. doi: 10.3390/life12050771.
  24. Pérez-Soto, E. et al. (2022). High-Risk HPV with Multiple Infections Promotes CYP2E1, Lipoperoxidation and Pro-Inflammatory Cytokines in Semen of Asymptomatic Infertile Men. Antioxidants. 11(6):1051. doi: 10.3390/antiox11061051.
  25. El Okle, O.S. et al. (2022). Ornipural® Mitigates Malathion-Induced Hepato-Renal Damage in Rats via Amelioration of Oxidative Stress Biomarkers, Restoration of Antioxidant Activity, and Attenuation of Inflammatory Response. Antioxidants (Basel). 11(4):757. doi: 10.3390/antiox11040757.
  26. Maciejczyk, M. et al. (2022). α-Lipoic Acid Strengthens the Antioxidant Barrier and Reduces Oxidative, Nitrosative, and Glycative Damage, as well as Inhibits Inflammation and Apoptosis in the Hypothalamus but Not in the Cerebral Cortex of Insulin-Resistant Rats. Oxid Med Cell Longev. doi: 10.1155/2022/7450514.
  27. Maciejczyk, M. et al. (2022). Oxidation, Glycation, and Carbamylation of Salivary Biomolecules in Healthy Children, Adults, and the Elderly: Can Saliva Be Used in the Assessment of Aging? J Inflamm Res. 15:2051-2073. doi: 10.2147/JIR.S356029.
  28. Kim, Y.B. et al. (2022). Incorporation of Dietary Methyl Sulfonyl Methane into the Egg Albumens of Laying Hens. Antioxidants (Basel). 11(3):517. doi: 10.3390/antiox11030517.
  29. Ivanova, I. et al. (2022). Investigation of the HelioVital filter foil revealed protective effects against UVA1 irradiation-induced DNA damage and against UVA1-induced expression of matrixmetalloproteinases (MMP) MMP1, MMP2, MMP3 and MMP15. Photochem Photobiol Sci. doi: 10.1007/s43630-022-00177-4.
  30. Tungmunnithum, D. et al. (2022). Flavonoids from Sacred Lotus Stamen Extract Slows Chronological Aging in Yeast Model by Reducing Oxidative Stress and Maintaining Cellular Metabolism. Cells. 11(4):599. doi: 10.3390/cells11040599.