Superoxide Dismutase (SOD) Activity Assay

Superoxide Dismutase (SOD) Activity Assay
  • Measure superoxide dismutase activity using a standard microplate reader
  • Suitable for use with plasma, serum, cells or tissues
  • Superoxide dismutase standard included for absolute quantitation

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Superoxide Dismutase Activity Assay
Catalog Number
STA-340
Size
100 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$590.00
Product Details

Superoxide dismutase (SOD), which catalyzes the dismutation of the superoxide anion into hydrogen peroxide and molecular oxygen, is one of the most important antioxidant enzymes. SOD enzymes are classified into three groups: cytosolic CuZn-SOD, mitochondrial Mn-SOD, and extracellular Ec-SOD.

Our OxiSelect™ Superoxide Dismutase Activity Assay uses a xanthine/xanthine oxidase (XOD) system to generate superoxide anions and a chromagen to produce a water-soluble formazan dye upon reduction by superoxide anions. The superoxide dismutase activity is determined as the inhibition or reduction of chromagen.

Assay Principle for the OxiSelect™ Superoxide Dismutase Activity Assay.

Standard Curve Generated with the OxiSelect™ Superoxide Dismutase Activity Assay.

Recent Product Citations
  1. Saha, T.K. et al. (2023). Immuno-physiological effects of dietary reishi mushroom powder as a source of beta-glucan on Rohu, Labeo rohita challenged with Aeromonas veronii. Sci Rep. 13(1):14652. doi: 10.1038/s41598-023-41557-9.
  2. Elrayess, A.R. et al. (2023). Biochemical, Histological and Ultrastructural Studies on the Effect of Citric acid Supplementation on Aflatoxins-intoxicated Japanese Quail. J. Adv. Vet. 13(6):958-964.  
  3. Hadžić, Z. et al. (2023). Oxidative Stress And C-Reactive Protein As Salivary Biomarkers In Smokers With Periodontitis Stage III And IV After Non-Surgical Periodontal Therapy (A Pilot Study). Acta Medica Mediterranea. 39:947-953. doi: 10.19193/0393-6384_2023_4_131.
  4. Sarkar, S. et al. (2023). Microplastic Pollution: Chemical Characterization and Impact on Wildlife. Int J Environ Res Public Health. 20(3):1745. doi: 10.3390/ijerph20031745.
  5. Rajab, B.S. et al. (2022). Antioxidative and Anti-Inflammatory Protective Effects of β-Caryophyllene against Amikacin-Induced Nephrotoxicity in Rat by Regulating the Nrf2/AMPK/AKT and NF-κB/TGF-β/KIM-1 Molecular Pathways. Oxid Med Cell Longev. doi: 10.1155/2022/4212331.
  6. Emam, K.K. et al. (2022). Assessment of Wheat Germ Oil Role in the Prevention of Induced Breast Cancer in Rats. ACS Omega. 7(16):13942-13952. doi: 10.1021/acsomega.2c00434.
  7. Carmona-Rodríguez, L. et al. (2022). Superoxide Dismutase-3 Downregulates Laminin α5 Expression in Tumor Endothelial Cells via the Inhibition of Nuclear Factor Kappa B Signaling. Cancers (Basel). 14(5):1226. doi: 10.3390/cancers14051226.
  8. Refaat, B. & El-Boshy, M. (2022). Protective antioxidative and anti-inflammatory actions of β-caryophyllene against sulfasalazine-induced nephrotoxicity in rat. Exp Biol Med (Maywood). doi: 10.1177/15353702211073804.
  9. Al-Saleh, I. et al. (2022). Essential metals, vitamins and antioxidant enzyme activities in COVID-19 patients and their potential associations with the disease severity. Biometals. doi: 10.1007/s10534-021-00355-4.
  10. Zhang, Q. et al. (2021). Micelle silymarin supplementation to sows' diet from day 109 of gestation to entire lactation period enhances reproductive performance, and affects serum hormones and metabolites. J Anim Sci. doi: 10.1093/jas/skab354.
  11. Nagata, M. et al. (2021). Protective Effects of the Alga Fucoidan Against Amyloid-β-Induced Neurotoxicity in SH-SY5Y Cells. BPB Reports. 4: 206-213.
  12. Hossain, Z. et al. (2021). Heavy metal toxicity in Buriganga river alters the immunology of Nile tilapia (Oreochromis niloticus L). Heliyon. 7(11):e08285. doi: 10.1016/j.heliyon.2021.e08285.
  13. Widiapradja, A. et al. (2021). Replacement of Lost Substance P Reduces Fibrosis in the Diabetic Heart by Preventing Adverse Fibroblast and Macrophage Phenotype Changes. Cells. 10(10):2659. doi: 10.3390/cells10102659.
  14. Ammar, I.M.M. & Salem, M.A.A. et al. (2021). Amelioration of polycystic ovary syndrome-related disorders by supplementation of thymoquinone and metformin. Middle East Fertil Soc J. doi: 10.1186/s43043-021-00076-1.
  15. Kimura, A.M. et al. (2021). Myricetin prevents high molecular weight Aβ1-42 oligomer-induced neurotoxicity through antioxidant effects in cell membranes and mitochondria. Free Radic Biol Med. 171:232-244. doi: 10.1016/j.freeradbiomed.2021.05.019.
  16. Sah, D.K. et al. (2021). Sphingosine kinase inhibitor, SKI-II confers protection against the ionizing radiation by maintaining redox homeostasis most likely through Nrf2 signaling. Life Sci. doi: 10.1016/j.lfs.2021.119543.
  17. Almarhoun, M. et al. (2021). Overexpression of STARD3 attenuates oxidized LDL-induced oxidative stress and inflammation in retinal pigment epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids. 1866(7):158927. doi: 10.1016/j.bbalip.2021.158927.
  18. Zhang, Y. et al. (2021). Neuroprotective effect of the somatostatin receptor 5 agonist L-817,818 on retinal ganglion cells in experimental glaucoma. Exp Eye Res. 204:108449. doi: 10.1016/j.exer.2021.108449.
  19. Nour, M.A. et al. (2021). Productive performance, fertility and hatchability, blood indices and gut microbial load in laying quails as affected by two types of probiotic bacteria. Saudi J Biol Sci. doi: 10.1016/j.sjbs.2021.07.030.
  20. Mukem, S. et al. (2021). Mito-Tempo suppresses autophagic flux via the PI3K/Akt/mTOR signaling pathway in neuroblastoma SH-SY5Y cells. Heliyon. doi: 10.1016/j.heliyon.2021.e07310.
  21. de Los Santos-Jiménez, J. et al. (2021). Glutaminase isoforms expression switches microRNA levels and oxidative status in glioblastoma cells. J Biomed Sci. 28(1):14. doi: 10.1186/s12929-021-00712-y.
  22. Dong, S. et al. (2021). Leukemia inhibitory factor protects photoreceptor cone cells against oxidative damage through activating JAK/STAT3 signaling. Ann Transl Med. 9(2):152. doi: 10.21037/atm-20-8040.
  23. Ra, K. et al. (2021). Comparison of Anti-Oxidative Effect of Human Adipose- and Amniotic Membrane-Derived Mesenchymal Stem Cell Conditioned Medium on Mouse Preimplantation Embryo Development. Antioxidants (Basel). 10(2):268. doi: 10.3390/antiox10020268.
  24. Tsvetkova, A.S. et al. (2020). Melatonin Prevents Early but Not Delayed Ventricular Fibrillation in the Experimental Porcine Model of Acute Ischemia. Int J Mol Sci. 22(1):E328. doi: 10.3390/ijms22010328.
  25. Ibnu Rasid, E.N. et al. (2020). Effect of Dioscorea hispida var. Daemona (Roxb) Prain & Burkill on Oxidative Stress and DNA Damage in the Liver of Pregnant Rats. Int J Biomed Sci. 16(3).
  26. Alfarisi, H.A.H. et al. (2020).  Hepatoprotective Effects of a Novel Trihoney against Nonalcoholic Fatty Liver Disease: A Comparative Study with Atorvastatin. The Scientific World Journal. doi: 10.1155/2020/4503253.
  27. Hwang, D.K. et al. (2020). Changes in the Systemic Expression of Sirtuin-1 and Oxidative Stress after Intravitreal Anti-Vascular Endothelial Growth Factor in Patients with Retinal Vein Occlusion. Biomolecules. 10(10):1414. doi: 10.3390/biom10101414.
  28. Li, T. et al. (2020). Nesfatin-1 Promotes Proliferation, Migration and Invasion of HTR-8/SVneo Trophoblast Cells and Inhibits Oxidative Stress via Activation of PI3K/AKT/mTOR and AKT/GSK3β Pathway. Reprod Sci. doi: 10.1007/s43032-020-00324-1.
  29. Kim, J.H. et al. (2020). Comparison of toxic effects of dietary organic or inorganic selenium and prediction of selenium intake and tissue selenium concentrations in broiler chickens using feather selenium concentrations. Poult Sci. doi: 10.1016/j.psj.2020.08.061.
  30. Chida, J. et al. (2020). Prion protein signaling induces M2 macrophage polarization and protects from lethal influenza infection in mice. PLoS Pathog. 16(8):e1008823. doi: 10.1371/journal.ppat.1008823.