Cyclic AMP Assays

Cyclic AMP Assays
  • Sensitivity as low as 1 pmol/mL
  • Suitable for use with cell and tissue lysates, urine, plasma, or culture medium
  • Colorimetric and chemiluminescent formats
  • Convenient strip-well plate format

 

Frequently Asked Questions about this product

Video: Color Development in an ELISA

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

cAMP ELISA Kit
Catalog Number
STA-501
Size
96 wells
Detection
Chemiluminescent
Manual/Data Sheet Download
SDS Download
Price
$535.00
cAMP ELISA Kit
Catalog Number
STA-501-5
Size
5 x 96 wells
Detection
Chemiluminescent
Manual/Data Sheet Download
SDS Download
Price
$2,175.00
cAMP ELISA Kit
Catalog Number
STA-500
Size
96 wells
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$535.00
cAMP ELISA Kit
Catalog Number
STA-500-5
Size
5 x 96 wells
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$2,175.00
Product Details

Cyclic AMP (cAMP) is an important regulatory molecule in the GPCR signaling cascade. Our cAMP ELISA Kits provide a highly sensitive method to measure low levels of cyclic AMP in a variety of sample types. These cAMP assays deliver throughput, sensitivity and convenience for a superior user experience.

cAMP ELISA Kit Assay Principle

cAMP ELISA Standard Curve

Recent Product Citations
  1. Jin, Z. et al. (2023). Vertical sleeve gastrectomy-derived gut metabolite licoricidin activates beige fat thermogenesis to combat obesity. Theranostics. 13(9):3103-3116. doi: 10.7150/thno.81893 (#STA-500).
  2. Peng, Y.J. et al. (2023). Hypoxia sensing requires H2S-dependent persulfidation of olfactory receptor 78. Sci Adv. 9(27):eadf3026. doi: 10.1126/sciadv.adf3026 (#STA-501).
  3. Kotlarczyk, A.M. et al. (2023). How Is Arachidonic Acid Metabolism in the Uterus Connected with the Immune Status of Red Deer Females (Cervus elaphus L.) in Different Reproductive Stages? Int J Mol Sci. 24(5):4771. doi: 10.3390/ijms24054771 (#STA-500).
  4. Athapaththu, A.M.G.K. et al. (2023). Pinostrobin Suppresses the α-Melanocyte-Stimulating Hormone-Induced Melanogenic Signaling Pathway. Int J Mol Sci. 24(1):821. doi: 10.3390/ijms24010821 (#STA-500).
  5. Al-Ghafari, A. et al. (2022). Cyclic AMP and calcium signaling are involved in antipsychotic-induced diabetogenic effects in isolated pancreatic β cells of CD1 mice. Int J Health Sci (Qassim). 16(5):9-20 (#STA-500).
  6. Lee, D. & PyoIn, Y. (2021). Vitro Anti-Obesity Effects of Raw Garlic and Pickled Garlic. J Korean Med Obes Res. 21:69-79. doi: 10.15429/jkomor.2021.21.2.69 (#STA-500).
  7. Lee, S.J. et al. (2021). Anti-Obesity Effect of α-Cubebenol Isolated from Schisandra chinensis in 3T3-L1 Adipocytes. Biomolecules. 11(11):1650. doi: 10.3390/biom11111650 (#STA-500).
  8. Boby, N. et al. (2021). Protective Effect of Pyrus ussuriensis Maxim. Extract against Ethanol-Induced Gastritis in Rats. Antioxidants. 10(3):439. doi: 10.3390/antiox10030439 (#STA-500).
  9. Huang, J. et al. (2020). The odorant receptor OR2W3 on airway smooth muscle evokes bronchodilation via a cooperative chemosensory tradeoff between TMEM16A and CFTR. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.2003111117 (#STA-500).
  10. Ridzwan, N. et al. (2020). Pomegranate-derived anthocyanin regulates MORs-cAMP/CREB-BDNF pathways in opioid-dependent models and improves cognitive impairments. J Ayurveda Integr Med. S0975-9476(18)30683-1. doi: 10.1016/j.jaim.2019.12.001 (#STA-500).
  11. Zhong, Y. et al. (2020). Berberine Attenuates Hyperglycemia by Inhibiting the Hepatic Glucagon Pathway in Diabetic Mice. Oxid Med Cell Longev. 2020:6210526. doi: 10.1155/2020/6210526 (#STA-500).
  12. Molagoda, I.M.N. et al. (2020). Ethanolic Extract of Hippocampus abdominalis Exerts Anti-Melanogenic Effects in B16F10 Melanoma Cells and Zebrafish Larvae by Activating the ERK Signaling Pathway. Cosmetics. 7(1):1-14. doi: 10.3390/cosmetics7010001 (#STA-500).
  13. Wójcik-Pszczoła, K. et al. (2019). Novel phosphodiesterases inhibitors from the group of purine-2,6-dione derivatives as potent modulators of airway smooth muscle cell remodelling. Eur J Pharmacol. doi: 10.1016/j.ejphar.2019.172779 (#STA-500).
  14. Mystek, P. et al. (2019). Gγ and Gα Identity Dictate a G-Protein Heterotrimer Plasma Membrane Targeting. Cells. 8(10). pii: E1246. doi: 10.3390/cells8101246 (#STA-500).
  15. Meng, W. et al. (2019). Rheb promotes brown fat thermogenesis by Notch-dependent activation of the PKA signaling pathway. J Mol Cell Biol. pii: mjz056. doi: 10.1093/jmcb/mjz056 (#STA-500).
  16. Chen, C. et al. (2019). 5'-Iodotubercidin represses insulinoma-associated-1 expression, decreases cAMP levels, and suppresses human neuroblastoma cell growth. J Biol Chem. 294(14):5456-5465. doi: 10.1074/jbc.RA118.006761 (#STA-500).
  17. d'Uscio, L.V. et al. (2019). Vascular phenotype of amyloid precursor protein-deficient mice. Am J Physiol Heart Circ Physiol. doi: 10.1152/ajpheart.00539.2018 (#STA-500).
  18. Gogola, J. et al. (2019). Persistent endocrine-disrupting chemicals found in human follicular fluid stimulate the proliferation of granulosa tumor spheroids via GPR30 and IGF1R but not via the classic estrogen receptors. Chemosphere. 217:100-110. doi: 10.1016/j.chemosphere.2018.11.018 (#STA-500).
  19. Jiang, X. et al. (2019). Pinoresinol promotes MC3T3‑E1 cell proliferation and differentiation via the cyclic AMP/protein kinase A signaling pathway. Molecular Medicine Reports. doi: 10.3892/mmr.2019.10468 (#STA-501).
  20. Mamat, N. et al. (2018). Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) Willd. Int J Mol Med. 42(5):2665-2675. doi: 10.3892/ijmm.2018.3861 (#STA-500).
  21. Wang, W. et al. (2018). Decreased cAMP Level and Decreased Downregulation of β1-Adrenoceptor Expression in Therapeutic Hypothermia-Resuscitated Myocardium Are Associated With Improved Post-Resuscitation Myocardial Function. J Am Heart Assoc. 7(6). pii: e006573. doi: 10.1161/JAHA.117.006573 (#STA-500).
  22. Kang, J.A. et al. (2018). Gamma-irradiated black ginseng extract inhibits mast cell degranulation and suppresses atopic dermatitis-like skin lesions in mice. Food Chem Toxicol. 111:133-143. doi: 10.1016/j.fct.2017.11.006 (#STA-500).
  23. He, T. et al. (2017). Impairment of amyloid precursor protein alpha-processing in cerebral microvessels of type 1 diabetic mice. J Cereb Blood Flow Metab. 271678X17746981. doi: 10.1177/0271678X17746981 (#STA-500).
  24. Niewiarowska-Sendo, A., et al. (2017). Bradykinin B2 and dopamine D2 receptors form a functional dimer. Biochim Biophys Acta. 1864(10):1855-1866. doi: 10.1016/j.bbamcr.2017.07.012 (#STA-501).
  25. Meena, N. P. and Kimmel, A.R. (2017). Chemotactic network responses to live bacteria show independence of phagocytosis from chemo-receptor sensing. Elife 6. doi: 10.7554/eLife.24627 (#STA-501).
  26. Simanjuntak Y, et al. (2017). Japanese Encephalitis Virus Exploits Dopamine D2 Receptor-phospholipase C to Target Dopaminergic Human Neuronal Cells. Front Microbiol. 8:651. doi: 10.3389/fmicb.2017.00651 (#STA-501).
  27. Israeli, M. et al. (2016). A simple luminescent adenylate-cyclase functional assay for evaluation of Bacillus anthracis edema factor activity. Toxins. 8:243 (#STA-501).
  28. Yong, Y. et al. (2014). Electromagnetic Fields Promote Osteogenesis of Rat Mesenchymal Stem Cells Through the PKA and ERK1/2 Pathways.J Tissue Eng Regen Med.doi: 10.1002/term.1864 (#STA-501).
  29. Jones, A. et al. (2014). Human Macrophage SCN5A Activates an Innate Immune Signaling Pathway for Antiviral Host Defense. J Biol Chem. 289:35326-35340 (#STA-501).
  30. Liu, L. et al. (2014).  PKCβII acts downstream of chemoattractant receptors and mTORC2 to regulate cAMP production and myosin II activity in neutrophils. Mol Biol Cell. 25:1446-1457 (#STA-501).