Catalase Activity Assays

Catalase Activity Assays
  • Quantify catalase activity in about 60 minutes
  • Suitable for use with plasma, serum, cell lysates or tissue homogenates
  • Catalase standard included for absolute quantitation

 

Frequently Asked Questions about this product

General FAQs about Oxidative Stress

Email To BuyerPrint this PageCopy Link
Ordering

Please contact your distributor for pricing.

OxiSelect™ Catalase Activity Assay Kit, Colorimetric
Catalog Number
STA-341
Size
96 assays
Detection
Colorimetric
Manual/Data Sheet Download
SDS Download
Price
$620.00
OxiSelect™ Catalase Activity Assay Kit, Fluorometric
Catalog Number
STA-339
Size
500 assays
Detection
Fluorometric
Manual/Data Sheet Download
SDS Download
Price
$695.00
Product Details

Catalase is a ubiquitous enzyme that destroys hydrogen peroxides formed during oxidative stress. Our OxiSelect™ Catalase Activity Assay Kits measure catalase activity in less than one hour from a variety of samples including blood, cells and tissues.

Direct spectrophotometric detection of catalase activity with ultraviolet light can cause interference from proteins and other biological components. The OxiSelect™ Catalase Activity Assay Kit (Colorimetric) utilizes visible light (520 nm), which reduces sample interference.

The OxiSelect™ Catalase Activity Assay Kit (Fluorometric) provides a 40-fold increase in sensitivity compared to our colorimetric assay.

Standard Curve Generated with the OxiSelect™ Catalase Activity Assay, Fluorometric.

Recent Product Citations
  1. Saha, T.K. et al. (2023). Immuno-physiological effects of dietary reishi mushroom powder as a source of beta-glucan on Rohu, Labeo rohita challenged with Aeromonas veronii. Sci Rep. 13(1):14652. doi: 10.1038/s41598-023-41557-9 (#STA-339).
  2. Lee, H. B. et al. (2023). Analysis of the physiological responses of Pacific abalone (Haliotis discus hannai) to various stressors to identify a suitable stress indicator. J World Aquac Soc. doi: 10.1111/jwas.12969 (#STA-339).
  3. Aspera-Werz, R.H. et al. (2022). Nicotine and Cotinine Induce Neutrophil Extracellular Trap Formation-Potential Risk for Impaired Wound Healing in Smokers. Antioxidants (Basel). 11(12):2424. doi: 10.3390/antiox11122424 (#STA-339).
  4. Gadallah, A. et al. (2023). Biological and Biochemical Effect of Green Peas and Lentils Sprouts on Rats with Fatty Liver. Bulletin of the National Nutrition Institute of the Arab Republic of Egypt. 61(1), 168-200. doi: 10.21608/bnni.2023.302245 (#STA-341).
  5. Thevanayagam, H. et al. (2022). Photoprotective Effects Of Carrageenans Against UltravioletB-Induced Extracellular Matrix (ECM) Damage In Keratinocytes. Malaysian J. Sci. 41(3):28-37. doi: 10.22452/mjs.vol41no3.4 (#STA-341).
  6. Spooner, R.K. et al. (2022). Mitochondrial Redox Environments Predict Sensorimotor Brain-Behavior Dynamics in Adults with HIV. Brain Behav Immun. doi: 10.1016/j.bbi.2022.10.004 (#STA-341).
  7. Emam, K.K. et al. (2022). Assessment of Wheat Germ Oil Role in the Prevention of Induced Breast Cancer in Rats. ACS Omega. 7(16):13942-13952. doi: 10.1021/acsomega.2c00434 (#STA-341).
  8. Spooner, R.K. et al. (2021). Neural oscillatory activity serving sensorimotor control is predicted by superoxide-sensitive mitochondrial redox environments. Proc Natl Acad Sci U S A. 118(43):e2104569118. doi: 10.1073/pnas.2104569118 (#STA-341).
  9. Ying, K.E. et al. (2021). Cellular antioxidant mechanisms control immunoglobulin light chain-mediated proximal tubule injury. Free Radic Biol Med. 171:80-90. doi: 10.1016/j.freeradbiomed.2021.05.011 (#STA-339).
  10. Almarhoun, M. et al. (2021). Overexpression of STARD3 attenuates oxidized LDL-induced oxidative stress and inflammation in retinal pigment epithelial cells. Biochim Biophys Acta Mol Cell Biol Lipids. 1866(7):158927. doi: 10.1016/j.bbalip.2021.158927 (#STA-341).
  11. Alses, M. & Alzeer, S. (2021). Evaluation of some biological parameters of gasoline station attendants in Damascus, Syria. Heliyon. 7(5):e07056. doi: 10.1016/j.heliyon.2021.e07056 (#STA-341).
  12. Jankowski, J. et al. (2021). The effect of different dietary ratios of lysine, arginine and methionine on protein nitration and oxidation reactions in turkey tissues and DNA. Animal. doi: 10.1016/j.animal.2021.100183 (#STA-339).
  13. Nasef, A.N.Z. & Khateib, B.R.M. (2021). Study the Potential Therapeutic Effect of Garden Cress (Lepidiumsativum) on Nephropathy Diabetic Rats: Biological and Biochemical Studies. ASEJ. 42(2):263-272. doi: 10.21608/asejaiqjsae.2021.165932 (#STA-341).
  14. de Los Santos-Jiménez, J. et al. (2021). Glutaminase isoforms expression switches microRNA levels and oxidative status in glioblastoma cells. J Biomed Sci. 28(1):14. doi: 10.1186/s12929-021-00712-y (#STA-341).
  15. Ra, K. et al. (2021). Comparison of Anti-Oxidative Effect of Human Adipose- and Amniotic Membrane-Derived Mesenchymal Stem Cell Conditioned Medium on Mouse Preimplantation Embryo Development. Antioxidants (Basel). 10(2):268. doi: 10.3390/antiox10020268 (#STA-341).
  16. Hwang, D.K. et al. (2020). Changes in the Systemic Expression of Sirtuin-1 and Oxidative Stress after Intravitreal Anti-Vascular Endothelial Growth Factor in Patients with Retinal Vein Occlusion. Biomolecules. 10(10):1414. doi: 10.3390/biom10101414 (#STA-341).
  17. Wake, H. et al. (2020). Histidine-rich glycoprotein possesses anti-oxidant activity through self-oxidation and inhibition of hydroxyl radical production via chelating divalent metal ions in Fenton's reaction. Free Radic Res. doi: 10.1080/10715762.2020.1825703 (#STA-341).
  18. Kim, J.H. et al. (2020). Comparison of toxic effects of dietary organic or inorganic selenium and prediction of selenium intake and tissue selenium concentrations in broiler chickens using feather selenium concentrations. Poult Sci. doi: 10.1016/j.psj.2020.08.061 (#STA-341).
  19. Marín-Echeverri,C. et al. (2020). Differential Effects of Agraz (Vaccinium meridionale Swartz) Consumption in Overweight and Obese Women with Metabolic Syndrome. Journal of Food and Nutrition Research. 8(8):399-409. doi: 10.12691/jfnr-8-8-3 (#STA-341).
  20. Yu, Y.B. et al. (2020). Effects of dietary ascorbic acid on growth performance, hematological parameters, antioxidant and non-specific immune responses in starry flounder, Platichthys stellatus. Aquac Rep. doi: 10.1016/j.aqrep.2020.100419 (#STA-341).
  21. Yıldız, A. et al. (2020). Ozone treatment for high-dose systemic Steroid-Induced retinal injury. Cutan Ocul Toxicol. doi: 10.1080/15569527.2020.1790590 (#STA-341).
  22. Wang, X. et al. (2020). Upregulation of microRNA-200a in bone marrow mesenchymal stem cells enhances the repair of spinal cord injury in rats by reducing oxidative stress and regulating Keap1/Nrf2 pathway. Artif Organs. doi: 10.1111/aor.13656 (#STA-341).
  23. Iqbal, S. et al. (2019). Antioxidant Enzymes Profile During Cryopreservation of Nili Ravi Buffalo Bull Spermatozoa (Bubalus Bubalis). The J. Anim. Plant Sci. 29(6):2019 (#STA-339).
  24. Aspera-Werz, R.H. et al. (2018). Nicotine and Cotinine Inhibit Catalase and Glutathione Reductase Activity Contributing to the Impaired Osteogenesis of SCP-1 Cells Exposed to Cigarette Smoke. Oxid Med Cell Longev. 2018:3172480. doi: 10.1155/2018/3172480 (#STA-339).
  25. du Plooy, C. S. et al. (2016). The association of endothelin-1 with markers of oxidative stress in a biethnic South African cohort: the SABPA study. Hypertens Res. doi:10.1038/hr.2016.128 (#STA-339).
  26. van Zyl, C. et al. (2016). Antioxidant enzyme activity is associated with blood pressure and carotid intima media thickness in black men and women: The SABPA study. Atherosclerosis. 248:91-96 (#STA-339).
  27. Mels, C. M. et al. (2016). The relationship of nitric oxide synthesis capacity, oxidative stress, and albumin-to-creatinine ratio in black and white men: the SABPA study. AGE. 38:1-11 (#STA-339).
  28. Iqbal, S. et al. (2016). l-Cysteine improves antioxidant enzyme activity, post-thaw quality and fertility of Nili-Ravi buffalo (Bubalus bubalis) bull spermatozoa. Andrologia. doi:10.1111/and.12520 (#STA-339).
  29. Yang, W. et al. (2015).AGE-dependent changes of the antioxidant system in rat livers are accompanied by altered MAPK activation and a decline in motor signaling. EXCLI J. 4:1273-1290 (#STA-339).
  30. Iqbal, S. et al. (2015). Trehalose improves semen antioxidant enzymes activity, post-thaw quality, and fertility in Nili Ravi buffaloes (Bubalus bubalis). Theriogenology doi:10.1016/j.theriogenology.2015.11.004 (#STA-339).